ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Paclitaxel-loaded biodegradable ROS-sensitive nanoparticles for cancer therapy

Permanent link
https://hdl.handle.net/10037/16401
DOI
https://doi.org/10.2147/IJN.S208938
Thumbnail
View/Open
article.pdf (6.244Mb)
Publisher`s version (PDF)
Date
2019-08-06
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Pandya, Abhilash D.; Jäger, Eliézer; Fam, Shahla Bagheri; Höcherl, Anita; Jäger, Alessandro; Sincari, Vladimir; Nyström, Bo; Štěpánek, Petr; Skotland, Tore; Sandvig, Kirsten; Hrubý, Martin; Mælandsmo, Gunhild M.
Abstract
Background: Reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, trigger biodegradation of polymer-based nanoparticles (NPs) bearing pinacol-type boronic ester groups. These NPs may selectively release their cargo, in this case paclitaxel (PTX), at the high levels of ROS present in the intracellular environment of inflamed tissues and most tumors.

Purpose: The main objective was to determine anti-tumor efficacy of PTX-loaded ROS-sensitive NPs and to examine whether macrophage infiltration had any impact on treatment efficacy.

Methods: NPs were synthesized and their characteristics in the presence of H2O2 were demonstrated. Both confocal microscopy as well as flow cytometry approaches were used to determine degradation of ROS-sensitive NPs. HeLa cells were cultured in vitro and used to establish tumor xenografts in nude mice. In vivo experiments were performed to understand toxicity, biodistribution and anti-tumor efficacy of the NPs. Moreover, we performed immunohistochemistry on tumor sections to study infiltration of M1 and M2 subsets of macrophages.

Results: We demonstrated that PTX delivered in NPs containing a ROS-sensitive polymer exhibits a better anti-tumor efficacy than PTX in NPs containing ROS-non-sensitive polymer, free PTX or Abraxane® (nab-PTX). The biodistribution revealed that ROS-sensitive NPs exhibit retention in liver, spleen and lungs, suggesting a potential to target cancer metastasizing to these organs. Finally, we demonstrated a correlation between infiltrated macrophage subsets and treatment efficacy, possibly contributing to the efficient anti-tumor effects.

Conclusion: Treatment with ROS-sensitive NPs containing PTX gave an improved therapeutic effect in HeLa xenografts than their counterpart, free PTX or nab-PTX. Our data revealed a correlation between macrophage infiltration and efficiency of the different antitumor treatments, as the most effective NPs resulted in the highest infiltration of the anti-tumorigenic M1 macrophages.

Description
Source at https://doi.org/10.2147/IJN.S208938.
Publisher
American Society for Nanomedicine
Citation
Pandya, A.D., Jäger, E., Fam, S.B., Höcherl, A., Jäger, A., Sincari, V. ... Mælandsmo, G.M. (2019). Paclitaxel-loaded biodegradable ROS-sensitive nanoparticles for cancer therapy. International Journal of Nanomedicine, 14, 6269-6285. https://doi.org/10.2147/IJN.S208938
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3245]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)