ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduced methane seepage from Arctic sediments during cold bottom-water conditions

Permanent link
https://hdl.handle.net/10037/17114
DOI
https://doi.org/10.1038/s41561-019-0515-3
Thumbnail
View/Open
article.pdf (1.611Mb)
Accepted manuscript version (PDF)
Date
2020-01-13
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Ferré, Benedicte; Jansson, Pär; Moser, Manuel; Serov, Pavel; Portnov, Aleksei D; Graves, Carolyn; Panieri, Giuliana; Gründger, Friederike; Berndt, Christian; Lehmann, Moritz F.; Niemann, Helge
Abstract
Large amounts of methane are trapped within gas hydrate in subseabed sediments in the Arctic Ocean, and bottom-water warming may induce the release of methane from the seafloor. Yet the effect of seasonal temperature variations on methane seepage activity remains unknown as surveys in Arctic seas are conducted mainly in summer. Here we compare the activity of cold seeps along the gas hydrate stability limit offshore Svalbard during cold (May 2016) and warm (August 2012) seasons. Hydro-acoustic surveys revealed a substantially decreased seepage activity during cold bottom-water conditions, corresponding to a 43% reduction of total cold seeps and methane release rates compared with warmer conditions. We demonstrate that cold seeps apparently hibernate during cold seasons, when more methane gas becomes trapped in the subseabed sediments. Such a greenhouse gas capacitor increases the potential for methane release during summer months. Seasonal bottom-water temperature variations are common on the Arctic continental shelves. We infer that methane-seep hibernation is a widespread phenomenon that is underappreciated in global methane budgets, leading to overestimates in current calculations.
Publisher
Nature Research
Citation
Ferré B, Jansson P, Moser M, Serov P, Portnov AD, Graves C, Panieri G, Gründger F, Berndt C, Lehmann MF, Niemann H. Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nature Geoscience. 2020
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (geovitenskap) [805]
© The Author(s), under exclusive licence to Springer Nature Limited 2020

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)