ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Partially spatially coherent digital holographic microscopy and machine learning for quantitative analysis of human spermatozoa under oxidative stress condition

Permanent link
https://hdl.handle.net/10037/17194
DOI
https://doi.org/10.1038/s41598-019-39523-5
Thumbnail
View/Open
article.pdf (2.112Mb)
Published version (PDF)
Date
2019-03-05
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Dubey, Vishesh Kumar; Popova, Daria; Ahmad, Azeem; Acharya, Ganesh; Basnet, Purusotam; Mehta, Dalip Singh; Ahluwalia, Balpreet Singh
Abstract
Semen quality assessed by sperm count and sperm cell characteristics such as morphology and motility, is considered to be the main determinant of men’s reproductive health. Therefore, sperm cell selection is vital in assisted reproductive technology (ART) used for the treatment of infertility. Conventional bright field optical microscopy is widely utilized for the imaging and selection of sperm cells based on the qualitative analysis by experienced clinicians. In this study, we report the development of a highly sensitive quantitative phase microscopy (QPM) using partially spatially coherent light source, which is a label-free, non-invasive and high-resolution technique to quantify various biophysical parameters. The partial spatial coherence nature of light source provides a significant improvement in spatial phase sensitivity and hence reconstruction of the phase of the entire sperm cell is demonstrated, which was otherwise not possible using highly spatially coherent light source. High sensitivity of the system enables quantitative phase imaging of the specimens having very low refractive index contrast with respect to the medium like tail of the sperm cells. Further, it also benefits with accurate quantification of 3D-morphological parameters of sperm cells which might be helpful in the infertility treatment. The quantitative analysis of more than 2500 sperm cells under hydrogen peroxide (H2O2) induced oxidative stress condition is demonstrated. It is further correlated with motility of sperm cell to study the effect of oxidative stress on healthy sperm cells. The results exhibit a decrease in the maximum phase values of the sperm head as well as decrease in the sperm cell’s motility with increasing oxidative stress, i.e., H2O2 concentration. Various morphological and texture parameters were extracted from the phase maps and subsequently support vector machine (SVM) based machine learning algorithm is employed for the classification of the control and the stressed sperms cells. The algorithm achieves an area under the receiver operator characteristic (ROC) curve of 89.93% based on the all morphological and texture parameters with a sensitivity of 91.18%. The proposed approach can be implemented for live sperm cells selection in ART procedure for the treatment of infertility.
Is part of
Popova, D. (2021). Advanced methods in reproductive medicine: Application of optical nanoscopy, artificial intelligence-assisted quantitative phase microscopy and mitochondrial DNA copy numbers to assess human sperm cells. (Doctoral thesis). https://hdl.handle.net/10037/22598.
Publisher
Nature Research
Citation
Dubey VK, Popova DA, Ahmad A, Acharya G, Basnet P, Mehta DS, Ahluwalia BS. Partially spatially coherent digital holographic microscopy and machine learning for quantitative analysis of human spermatozoa under oxidative stress condition. Scientific Reports. 2019;9(1)
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2019 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)