ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • Vis innførsel
  •   Hjem
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning of Infant Spontaneous Movements for the Early Prediction of Cerebral Palsy: A Multi-Site Cohort Study

Permanent lenke
https://hdl.handle.net/10037/17641
DOI
https://doi.org/10.3390/jcm9010005
Thumbnail
Åpne
article.pdf (915.8Kb)
Publisert versjon (PDF)
Dato
2019-12-18
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Ihlen, Espen Alexander F.; Støen, Ragnhild; Boswell, Lynn; de-Regnier, Raye-Ann; Fjørtoft, Toril Larsson; Gaebler-Spira, Deborah; Labori, Cathrine; Loennecken, Marianne; Msall, Michael; Møinichen, Unn Inger; Peyton, Colleen; Schreiber, Michael; Silberg, Inger Elisabeth; Songstad, Nils Thomas; Vågen, Randi; Øberg, Gunn Kristin; Adde, Lars
Sammendrag
Background: Early identification of cerebral palsy (CP) during infancy will provide opportunities for early therapies and treatments. The aim of the present study was to present a novel machine-learning model, the Computer-based Infant Movement Assessment (CIMA) model, for clinically feasible early CP prediction based on infant video recordings.

Methods: The CIMA model was designed to assess the proportion (%) of CP risk-related movements using a time–frequency decomposition of the movement trajectories of the infant’s body parts. The CIMA model was developed and tested on video recordings from a cohort of 377 high-risk infants at 9–15 weeks corrected age to predict CP status and motor function (ambulatory vs. non-ambulatory) at mean 3.7 years age. The performance of the model was compared with results of the general movement assessment (GMA) and neonatal imaging.

Results: The CIMA model had sensitivity (92.7%) and specificity (81.6%), which was comparable to observational GMA or neonatal cerebral imaging for the prediction of CP. Infants later found to have non-ambulatory CP had significantly more CP risk-related movements (median: 92.8%, p = 0.02) compared with those with ambulatory CP (median: 72.7%).

Conclusion: The CIMA model may be a clinically feasible alternative to observational GMA.

Forlag
MDPI
Sitering
Ihlen EAF, Støen R, Boswell L, de-Regnier R, Fjørtoft TLF, Gaebler-spira D, Labori C, Loennecken M, Msall M, Møinicken Ui, Peyton C, Schreiber M, Silberg IE, Songstad NT, Vaagen R, Øberg gk, Adde L. Machine Learning of Infant Spontaneous Movements for the Early Prediction of Cerebral Palsy: A Multi-Site Cohort Study. Journal of Clinical Medicine. 2019
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (klinisk medisin) [1974]
Copyright 2019 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring