ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • Vis innførsel
  •   Hjem
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applying speech technologies to assess verbal memory in patients with serious mental illness

Permanent lenke
https://hdl.handle.net/10037/17993
DOI
https://doi.org/10.1038/s41746-020-0241-7
Thumbnail
Åpne
article.pdf (958.6Kb)
Publisert versjon (PDF)
Dato
2020-03-11
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Holmlund, Terje Bektesevic; Chandler, Chelsea; Foltz, Peter W.; Cohen, Alex S.; Cheng, Jian; Bernstein, Jared C.; Rosenfeld, Elizabeth P.; Elvevåg, Brita
Sammendrag
Verbal memory deficits are some of the most profound neurocognitive deficits associated with schizophrenia and serious mental illness in general. As yet, their measurement in clinical settings is limited to traditional tests that allow for limited administrations and require substantial resources to deploy and score. Therefore, we developed a digital ambulatory verbal memory test with automated scoring, and repeated self-administration via smart devices. One hundred and four adults participated, comprising 25 patients with serious mental illness and 79 healthy volunteers. The study design was successful with high quality speech recordings produced to 92% of prompts (Patients: 86%, Healthy: 96%). The story recalls were both transcribed and scored by humans, and scores generated using natural language processing on transcriptions were comparable to human ratings (R = 0.83, within the range of human-to-human correlations of R = 0.73–0.89). A fully automated approach that scored transcripts generated by automatic speech recognition produced comparable and accurate scores (R = 0.82), with very high correlation to scores derived from human transcripts (R = 0.99). This study demonstrates the viability of leveraging speech technologies to facilitate the frequent assessment of verbal memory for clinical monitoring purposes in psychiatry.
Er en del av
Holmlund, T.B. (2020). Modeling remotely collected speech data: Applications for psychiatry. (Doctoral thesis). https://hdl.handle.net/10037/17098.
Forlag
Nature Research
Sitering
Holmlund TB, Chandler, Foltz PW, Cohen AS, Cheng J, Bernstein, Rosenfeld, Elvevåg B. Applying speech technologies to assess verbal memory in patients with serious mental illness. npj Digital Medicine. 2020;3
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (klinisk medisin) [1974]
Copyright 2020 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring