ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Kvasir-SEG: A Segmented Polyp Dataset

Permanent link
https://hdl.handle.net/10037/18342
DOI
https://doi.org/10.1007/978-3-030-37734-2_37
Thumbnail
View/Open
article.pdf (4.036Mb)
Accepted manuscript version (PDF)
Date
2020-01-24
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Jha, Debesh; Pia H, Smedsrud; Riegler, Michael; Halvorsen, Pål; de Lange, Thomas; Johansen, Dag; Johansen, Håvard D.
Abstract
Pixel-wise image segmentation is a highly demanding task in medical-image analysis. In practice, it is difficult to find annotated medical images with corresponding segmentation masks. In this paper, we present Kvasir-SEG: an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical doctor and then verified by an experienced gastroenterologist. Moreover, we also generated the bounding boxes of the polyp regions with the help of segmentation masks. We demonstrate the use of our dataset with a traditional segmentation approach and a modern deep-learning based Convolutional Neural Network (CNN) approach. The dataset will be of value for researchers to reproduce results and compare methods. By adding segmentation masks to the Kvasir dataset, which only provide frame-wise annotations, we enable multimedia and computer vision researchers to contribute in the field of polyp segmentation and automatic analysis of colonoscopy images.
Description
Publisher's version available at: https://link.springer.com/chapter/10.1007%2F978-3-030-37734-2_37
Publisher
Springer
Citation
Jha, D.; Pia, H.; Riegler, M.; Halvorsen, P.; de Lange, T.; Johansen, D.; Johansen, H.J. (2020) Kvasir-SEG: A Segmented Polyp Dataset. Lecture Notes in Computer Science (LNCS), 2020, 11962, 451-462
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (informatikk) [482]
Copyright 2020 Springer

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)