ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for humaniora, samfunnsvitenskap og lærerutdanning
  • Institutt for lærerutdanning og pedagogikk
  • Artikler, rapporter og annet (lærerutdanning og pedagogikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for humaniora, samfunnsvitenskap og lærerutdanning
  • Institutt for lærerutdanning og pedagogikk
  • Artikler, rapporter og annet (lærerutdanning og pedagogikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Early Detection of Change by Applying Scale-Space Methodology to Hyperspectral Images

Permanent lenke
https://hdl.handle.net/10037/18612
DOI
https://doi.org/10.3390/app10072298
Thumbnail
Åpne
article.pdf (678.9Kb)
Publisert versjon (PDF)
Dato
2020-03-27
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Uteng, Stig; Johansen, Thomas Haugland; Zaballos, Jose Ignacio; Ortega, Samuel; Holmström, Lasse; Callico, Gustavo M.; Fabelo, Himar; Godtliebsen, Fred
Sammendrag
Given an object of interest that evolves in time, one often wants to detect possible changes in its properties. The first changes may be small and occur in different scales and it may be crucial to detect them as early as possible. Examples include identification of potentially malignant changes in skin moles or the gradual onset of food quality deterioration. Statistical scale-space methodologies can be very useful in such situations since exploring the measurements in multiple resolutions can help identify even subtle changes. We extend a recently proposed scale-space methodology to a technique that successfully detects such small changes and at the same time keeps false alarms at a very low level. The potential of the novel methodology is first demonstrated with hyperspectral skin mole data artificially distorted to include a very small change. Our real data application considers hyperspectral images used for food quality detection. In these experiments the performance of the proposed method is either superior or on par with a standard approach such as principal component analysis.
Er en del av
Johansen, T.H. (2021). Leveraging Computer Vision for Applications in Biomedicine and Geoscience. (Doctoral thesis). https://hdl.handle.net/10037/21377.
 
Uteng, S. (2022). Statistical Curve Analysis: Developing Methods and Expanding Knowledge in Health. (Doctoral thesis). https://hdl.handle.net/10037/25969.
Forlag
MDPI
Sitering
Uteng, S., Johansen, T.H., Zaballos, J.I., Ortega, S., Holmström, L., Callico, G.M., Fabelo, H. & Godtliebsen, F. (2020). Early Detection of Change by Applying Scale-Space Methodology to Hyperspectral Images. Applied Sciences, 10(7), 2298
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (lærerutdanning og pedagogikk) [663]
Copyright 2020 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring