Show simple item record

dc.contributor.authorAcuña Maldonado, Sebastian Andres
dc.contributor.authorOpstad, Ida Sundvor
dc.contributor.authorGodtliebsen, Fred
dc.contributor.authorAhluwalia, Balpreet Singh
dc.contributor.authorAgarwal, Krishna
dc.date.accessioned2021-01-23T10:17:43Z
dc.date.available2021-01-23T10:17:43Z
dc.date.issued2020-10-28
dc.description.abstractMultiple signal classification algorithm (MUSICAL) exploits temporal fluctuations in fluorescence intensity to perform super-resolution microscopy by computing the value of a super-resolving indicator function across a fine sample grid. A key step in the algorithm is the separation of the measurements into signal and noise subspaces, based on a single user-specified parameter called the threshold. The resulting image is strongly sensitive to this parameter and the subjectivity arising from multiple practical factors makes it difficult to determine the right rule of selection. We address this issue by proposing soft thresholding schemes derived from a new generalized framework for indicator function design. We show that the new schemes significantly alleviate the subjectivity and sensitivity of hard thresholding while retaining the super-resolution ability. We also evaluate the trade-off between resolution and contrast and the out-of-focus light rejection using the various indicator functions. Through this, we create significant new insights into the use and further optimization of MUSICAL for a wide range of practical scenarios.en_US
dc.identifier.citationAcuña Maldonado SAA, Opstad IS, Godtliebsen F, Ahluwalia BS, Agarwal K. Soft thresholding schemes for multiple signal classification algorithm. Optics Express. 2020;28(23)en_US
dc.identifier.cristinIDFRIDAID 1843230
dc.identifier.doi10.1364/OE.409363
dc.identifier.issn1094-4087
dc.identifier.urihttps://hdl.handle.net/10037/20408
dc.language.isoengen_US
dc.publisherOptical Society of Americaen_US
dc.relation.ispartofAcuna Maldonado, S.A. (2023). Multiple Signal Classification Algorithm: A computational microscopy tool for fluorescence microscopy. (Doctoral thesis). <a href=https://hdl.handle.net/10037/31879>https://hdl.handle.net/10037/31879</a>.
dc.relation.journalOptics Express
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/749666/EU/Chip-based MUSICAL nanoscopy for imaging endocytosis pathways of phage viruses in liver sinusoidal endothelial cells/MUSICAL/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/BIOTEK2021/285571/Norway/Optimalisering: High-throughput and high-resolution pathology using chip-based nanoscopy//en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/804233/EU/Label-free 3D morphological nanoscopy for studying sub-cellular dynamics in live cancer cells with high spatio-temporal resolution/3D-nanoMorph/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Optical Society of Americaen_US
dc.subjectVDP::Technology: 500::Medical technology: 620en_US
dc.subjectVDP::Teknologi: 500::Medisinsk teknologi: 620en_US
dc.titleSoft thresholding schemes for multiple signal classification algorithmen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record