ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Soft thresholding schemes for multiple signal classification algorithm

Permanent lenke
https://hdl.handle.net/10037/20408
DOI
https://doi.org/10.1364/OE.409363
Thumbnail
Åpne
article.pdf (1.621Mb)
Publisert versjon (PDF)
Dato
2020-10-28
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Acuña Maldonado, Sebastian Andres; Opstad, Ida Sundvor; Godtliebsen, Fred; Ahluwalia, Balpreet Singh; Agarwal, Krishna
Sammendrag
Multiple signal classification algorithm (MUSICAL) exploits temporal fluctuations in fluorescence intensity to perform super-resolution microscopy by computing the value of a super-resolving indicator function across a fine sample grid. A key step in the algorithm is the separation of the measurements into signal and noise subspaces, based on a single user-specified parameter called the threshold. The resulting image is strongly sensitive to this parameter and the subjectivity arising from multiple practical factors makes it difficult to determine the right rule of selection. We address this issue by proposing soft thresholding schemes derived from a new generalized framework for indicator function design. We show that the new schemes significantly alleviate the subjectivity and sensitivity of hard thresholding while retaining the super-resolution ability. We also evaluate the trade-off between resolution and contrast and the out-of-focus light rejection using the various indicator functions. Through this, we create significant new insights into the use and further optimization of MUSICAL for a wide range of practical scenarios.
Er en del av
Acuna Maldonado, S.A. (2023). Multiple Signal Classification Algorithm: A computational microscopy tool for fluorescence microscopy. (Doctoral thesis). https://hdl.handle.net/10037/31879.
Forlag
Optical Society of America
Sitering
Acuña Maldonado SAA, Opstad IS, Godtliebsen F, Ahluwalia BS, Agarwal K. Soft thresholding schemes for multiple signal classification algorithm. Optics Express. 2020;28(23)
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2020 The Optical Society of America

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring