ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Glutamatergic modulation of auditory cortex connectivity with attentional brain networks in unpredictable perceptual environment

Permanent link
https://hdl.handle.net/10037/20412
DOI
https://doi.org/10.1038/s41598-020-72044-0
Thumbnail
View/Open
article.pdf (2.480Mb)
Published version (PDF)
Date
2020-09-14
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Kompus, Kristiina; Volehaugen, Vegard; Craven, Alexander R.; Specht, Karsten
Abstract
In a stable environment the brain can minimize processing required for sensory input by forming a predictive model of the surrounding world and suppressing neural response to predicted stimuli. Unpredicted stimuli lead to a prediction error signal propagation through the perceptual network, and resulting adjustment to the predictive model. The inter-regional plasticity which enables the model-building and model-adjustment is hypothesized to be mediated via glutamatergic receptors. While pharmacological challenge studies with glutamate receptor ligands have demonstrated impact on prediction-error indices, it is not clear how inter-individual differences in the glutamate system affect the prediction-error processing in non-medicated state. In the present study we examined 20 healthy young subjects with resting-state proton MRS spectroscopy to characterize glutamate + glutamine (rs-Glx) levels in their Heschl’s gyrus (HG), and related this to HG functional connectivity during a roving auditory oddball protocol. No rs-Glx effects were found within the frontotemporal prediction-error network. Larger rs-Glx signal was related to stronger connectivity between HG and bilateral inferior parietal lobule during unpredictable auditory stimulation. We also found effects of rs-Glx on the coherence of default mode network and frontoparietal network during unpredictable auditory stimulation. Our results demonstrate the importance of Glx in modulating long-range connections and wider networks in the brain during perceptual inference.
Publisher
Springer
Citation
Kompus, Volehaugen, Craven, Specht. Glutamatergic modulation of auditory cortex connectivity with attentional brain networks in unpredictable perceptual environment. Scientific Reports. 2020;10:115059:1-10
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3245]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)