Vis enkel innførsel

dc.contributor.authorGravesteijn, BY
dc.contributor.authorNieboer, Daan
dc.contributor.authorErcole, Ari
dc.contributor.authorLingsma, Hester F
dc.contributor.authorNelson, David
dc.contributor.authorVan Calster, Ben
dc.contributor.authorSteyerberg, Ewout W
dc.contributor.authorAndelic, Nada
dc.contributor.authorAnke, Audny
dc.contributor.authorFrisvold, Shirin
dc.contributor.authorHelseth, Eirik
dc.contributor.authorRøe, Cecilie
dc.contributor.authorRøise, Olav
dc.contributor.authorSkandsen, Toril
dc.contributor.authorVik, Anne
dc.date.accessioned2021-04-12T08:19:59Z
dc.date.available2021-04-12T08:19:59Z
dc.date.issued2020-03-19
dc.description.abstract<i>Objective</i> - We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury.<br><br> <i>Study Design and Setting</i> - We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, <i>n</i> = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, <i>n</i> = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified.<br><br> <i>Results</i> - In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study.<br><br> <i>Conclusion</i> - ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations.en_US
dc.identifier.citationGravesteijn B, Nieboer D, Ercole A, Lingsma HF, Nelson D, Van Calster B, Steyerberg EW, Andelic N, Anke A, Frisvold S, Helseth E, Røe C, Røise O, Skandsen T, Vik A. Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury . Journal of Clinical Epidemiology. 2020en_US
dc.identifier.cristinIDFRIDAID 1829378
dc.identifier.doi10.1016/j.jclinepi.2020.03.005
dc.identifier.issn0895-4356
dc.identifier.issn1878-5921
dc.identifier.urihttps://hdl.handle.net/10037/20851
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalJournal of Clinical Epidemiology
dc.relation.projectIDEU: 602150en_US
dc.relation.projectIDNorges forskningsråd: 272789en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/602150/EU/Collaborative European NeuroTrauma Effectiveness Research in TBI/CENTER-TBI/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/HELSEVEL-H/272789/Norway/Research Centre for Habilitation and Rehabilitation Models and Services (CHARM 2)/CHARM 2/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Medical disciplines: 700en_US
dc.subjectVDP::Medisinske Fag: 700en_US
dc.subjectVDP::Technology: 500::Medical technology: 620en_US
dc.subjectVDP::Teknologi: 500::Medisinsk teknologi: 620en_US
dc.titleMachine learning algorithms performed no better than regression models for prognostication in traumatic brain injuryen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel