ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The thermal maturity of sedimentary basins as revealed by magnetic mineralogy

Permanent link
https://hdl.handle.net/10037/21389
DOI
https://doi.org/10.1111/bre.12439
Thumbnail
View/Open
article.pdf (25.16Mb)
Accepted manuscript version (PDF)
Date
2020-02-08
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Abdelmalak, Mohamed Mansour; Polteau, Stephane
Abstract
The thermal evolution of sedimentary basins is usually constrained by maturity data, which is interpreted from Rock-Eval pyrolysis and vitrinite reflectance analytical results on field or boreholes samples. However, some thermal evolution models may be inaccurate due to the use of elevated maturities measured in samples collected within an undetected metamorphic contact aureole surrounding a magmatic intrusion. In this context, we investigate the maturity and magnetic mineralogy of 16 claystone samples from Disko-Svartenhuk Basin, part of the SE Baffin Bay volcanic margin. Samples were collected within thermal contact metamorphic aureoles near magma intrusions, as well as equivalent reference samples not affected by intrusions. Rock-Eval pyrolysis (Tmax), and vitrinite reflectance (Ro) analysis were performed to assess the thermal maturity, which lies in the oil window when 435°C ≤ Tmax ≤ 470°C and 0.6%–0.7% ≤ Ro ≤ 1.3%. In addition, we performed low- (<300K) and high-temperature (>300K) investigations of isothermal remanent magnetization to assess the magnetic mineralogy of the selected samples. The maturity results (0.37% ≤ Ro ≤ 2%, 22°C ≤ Tmax ≤ 604°C) show a predominance of immature to early mature Type III organic matter, but do not reliably identify the contact aureole when compared to the reference samples. The magnetic assemblage of the immature samples consists of iron sulphide (greigite), goethite and oxidized or non-stoichiometric magnetite. The magnetic assemblage of the early mature to mature samples consists of stoichiometric magnetite and fine-grained pyrrhotite (<1 μm). These results document the disappearance of the iron sulphide (greigite) and increase in content of magnetite during normal burial. On the other hand, magnetite is interpreted to be the dominant magnetic mineral inside the contact aureole surrounding dyke/sill intrusions where palaeotemperatures indicate mature to over-mature state. Interestingly, the iron sulphide (greigite) is still detected in the contact aureole where palaeotemperatures exceeded 130°C. Therefore, the magnetic mineralogy is a sensitive method that can characterize normal burial history, as well as identify hidden metamorphic contact aureoles where the iron sulphide greigite is present at temperatures beyond its stability field.
Description
This is the peer reviewed version of the following article: Abdelmalak, M. M. & Polteau, S. (2020). The thermal maturity of sedimentary basins as revealed by magnetic mineralogy. Basin Research, 32(6), 1510-1531., which has been published in final form at https://doi.org/10.1111/bre.12439. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Publisher
Wiley
Citation
Abdelmalak MM, Polteau S. The thermal maturity of sedimentary basins as revealed by magnetic mineralogy. Basin Research. 2020;32(6):1510-1531
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3244]
© 2020 The Authors. Basin Research © 2020 John Wiley & Sons Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists.

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)