ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Kvasir-Capsule, a video capsule endoscopy dataset

Permanent link
https://hdl.handle.net/10037/21497
DOI
https://doi.org/10.1038/s41597-021-00920-z
Thumbnail
View/Open
article.pdf (1.658Mb)
Published version (PDF)
Date
2021-05-27
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Smedsrud, Pia H; Thambawita, Vajira L B; Hicks, Steven; Gjestang, Henrik; Olsen Nedrejord, Oda; Næss, Espen; Borgli, Hanna; Jha, Debesh; Berstad, Tor Jan; Eskeland, Sigrun Losada; Lux, Mathias; Espeland, Håvard; Petlund, Andreas; Dang Nguyen, Duc Tien; Garcia, Enrique; Johansen, Dag; Schmidt, Peter Thelin; Toth, Ervin; Hammer, Hugo Lewi; de Lange, Thomas; Riegler, Michael Alexander; Halvorsen, Pål
Abstract
Artificial intelligence (AI) is predicted to have profound effects on the future of video capsule endoscopy (VCE) technology. The potential lies in improving anomaly detection while reducing manual labour. Existing work demonstrates the promising benefits of AI-based computer-assisted diagnosis systems for VCE. They also show great potential for improvements to achieve even better results. Also, medical data is often sparse and unavailable to the research community, and qualified medical personnel rarely have time for the tedious labelling work. We present Kvasir-Capsule, a large VCE dataset collected from examinations at a Norwegian Hospital. Kvasir-Capsule consists of 117 videos which can be used to extract a total of 4,741,504 image frames. We have labelled and medically verified 47,238 frames with a bounding box around findings from 14 different classes. In addition to these labelled images, there are 4,694,266 unlabelled frames included in the dataset. The Kvasir-Capsule dataset can play a valuable role in developing better algorithms in order to reach true potential of VCE technology.
Is part of
Jha, D. (2022). Machine Learning-based Classification, Detection, and Segmentation of Medical Images. (Doctoral thesis). https://hdl.handle.net/10037/23693.
Publisher
Springer Nature
Citation
Smedsrud, Thambawita, Hicks, Gjestang, Olsen Nedrejord, Næss, Borgli, Jha, Berstad, Eskeland, Lux, Espeland, Petlund, Dang Nguyen, Garcia, Johansen, Schmidt, Toth, Hammer, de Lange, Riegler, Halvorsen. Kvasir-Capsule, a video capsule endoscopy dataset. Scientific Data. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3245]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)