Vis enkel innførsel

dc.contributor.authorSmedsrud, Pia H
dc.contributor.authorThambawita, Vajira L B
dc.contributor.authorHicks, Steven
dc.contributor.authorGjestang, Henrik
dc.contributor.authorOlsen Nedrejord, Oda
dc.contributor.authorNæss, Espen
dc.contributor.authorBorgli, Hanna
dc.contributor.authorJha, Debesh
dc.contributor.authorBerstad, Tor Jan
dc.contributor.authorEskeland, Sigrun Losada
dc.contributor.authorLux, Mathias
dc.contributor.authorEspeland, Håvard
dc.contributor.authorPetlund, Andreas
dc.contributor.authorDang Nguyen, Duc Tien
dc.contributor.authorGarcia, Enrique
dc.contributor.authorJohansen, Dag
dc.contributor.authorSchmidt, Peter Thelin
dc.contributor.authorToth, Ervin
dc.contributor.authorHammer, Hugo Lewi
dc.contributor.authorde Lange, Thomas
dc.contributor.authorRiegler, Michael Alexander
dc.contributor.authorHalvorsen, Pål
dc.date.accessioned2021-06-21T20:21:43Z
dc.date.available2021-06-21T20:21:43Z
dc.date.issued2021-05-27
dc.description.abstractArtificial intelligence (AI) is predicted to have profound effects on the future of video capsule endoscopy (VCE) technology. The potential lies in improving anomaly detection while reducing manual labour. Existing work demonstrates the promising benefits of AI-based computer-assisted diagnosis systems for VCE. They also show great potential for improvements to achieve even better results. Also, medical data is often sparse and unavailable to the research community, and qualified medical personnel rarely have time for the tedious labelling work. We present Kvasir-Capsule, a large VCE dataset collected from examinations at a Norwegian Hospital. Kvasir-Capsule consists of 117 videos which can be used to extract a total of 4,741,504 image frames. We have labelled and medically verified 47,238 frames with a bounding box around findings from 14 different classes. In addition to these labelled images, there are 4,694,266 unlabelled frames included in the dataset. The Kvasir-Capsule dataset can play a valuable role in developing better algorithms in order to reach true potential of VCE technology.en_US
dc.identifier.citationSmedsrud, Thambawita, Hicks, Gjestang, Olsen Nedrejord, Næss, Borgli, Jha, Berstad, Eskeland, Lux, Espeland, Petlund, Dang Nguyen, Garcia, Johansen, Schmidt, Toth, Hammer, de Lange, Riegler, Halvorsen. Kvasir-Capsule, a video capsule endoscopy dataset. Scientific Data. 2021en_US
dc.identifier.cristinIDFRIDAID 1912717
dc.identifier.doi10.1038/s41597-021-00920-z
dc.identifier.issn2052-4463
dc.identifier.urihttps://hdl.handle.net/10037/21497
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofJha, D. (2022). Machine Learning-based Classification, Detection, and Segmentation of Medical Images. (Doctoral thesis). <a href=https://hdl.handle.net/10037/23693>https://hdl.handle.net/10037/23693</a>.
dc.relation.journalScientific Data
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/BIA/282315/Norway/AutoCap: Automatic Anomaly Detection in Video Capsule Endoscopy/AutoCap/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/FORINFRA/270053/Norway/Experimental Infrastructure for Exploration of Exascale Computing//en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Technology: 500::Medical technology: 620en_US
dc.subjectVDP::Teknologi: 500::Medisinsk teknologi: 620en_US
dc.titleKvasir-Capsule, a video capsule endoscopy dataseten_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel