ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

An AIS-based deep learning framework for regional ship behavior prediction

Permanent lenke
https://hdl.handle.net/10037/21696
DOI
https://doi.org/10.1016/j.ress.2021.107819
Thumbnail
Åpne
article.pdf (3.809Mb)
Publisert versjon (PDF)
Dato
2021-05-27
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Murray, Brian; Perera, Lokukaluge Prasad
Sammendrag
This study presents a deep learning framework to support regional ship behavior prediction using historical AIS data. The framework is meant to aid in proactive collision avoidance, in order to enhance the safety of maritime transportation systems. In this study, it is suggested to decompose the historical ship behavior in a given geographical region into clusters. Each cluster will contain trajectories with similar behavior characteristics. For each unique cluster, the method generates a local model to describe the local behavior in the cluster. In this manner, higher fidelity predictions can be facilitated compared to training a model on all available historical behavior. The study suggests to cluster historical trajectories using a variational recurrent autoencoder and the Hierarchical Density-Based Spatial Clustering of Applications with Noise algorithm. The past behavior of a selected vessel is then classified to the most likely clusters of behavior based on the softmax distribution. Each local model consists of a sequence-to-sequence model with attention. When utilizing the deep learning framework, a user inputs the past trajectory of a selected vessel, and the framework outputs the most likely future trajectories. The model was evaluated using a geographical region as a test case, with successful results.
Forlag
Elsevier
Sitering
Murray, Perera. An AIS-based deep learning framework for regional ship behavior prediction. Reliability Engineering & System Safety. 2021
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (teknologi og sikkerhet) [361]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring