ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiresolution Dynamic Mode Decomposition (mrDMD) of Elastic Waves for Damage Localisation in Piezoelectric Ceramic

Permanent link
https://hdl.handle.net/10037/23455
DOI
https://doi.org/10.1109/ACCESS.2021.3108440
Thumbnail
View/Open
article.pdf (2.686Mb)
Published version (PDF)
Date
2021-08-27
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Kalimullah, Nur M. M.; Shelke, Amit; Habib, Anowarul
Abstract
The performance of piezoelectric sensors deteriorated due to the presence of defect, delamination, and corrosion that needed to be diagnosed for the effective implementation of the structural health monitoring (SHM) framework. A novel experimental approach based on Coulomb coupling is devised to visualise the interaction of ultrasonic waves with microscale defects in the Lead Zirconate Titanate (PZT). Multiresolution dynamic mode decomposition (mrDMD) technique in conjunction with image registration, and Kullback Leibler (KL) divergence is utilised to diagnose and localise the surface defect in the PZT. The mrDMD technique extracts the spatiotemporal coherent mode and provides an equation-free architecture to reconstruct underlying system dynamics. Additionally, due to the strong connection between mrDMD and Koopman operator theory, the proposed technique is well suited to resolve the nonlinear and dispersive interaction of elastic waves with boundaries and defects. The mrDMD sequentially decomposes the three-dimensional spatiotemporal data into low and high frequency modes. The spectral modes are sensitive to defects based on the scaling of wavelength with the size of the defect. The error due to offset and distortion was minimised with ad hoc image registration technique. Further, localisation and quantification of defect are performed by evaluating the distance metric of the probability distribution of coherent data of mrDMD acquired from healthy and defected samples. In the arena of big-data that is ubiquitous in SHM, the paper demonstrates an efficient damage localisation algorithm that explores the nonlinear system dynamics using spectral multi-mode resolution techniques by sensitising the damage features.
Publisher
IEEE
Citation
Kalimullah, Shelke, Habib. Multiresolution Dynamic Mode Decomposition (mrDMD) of Elastic Waves for Damage Localisation in Piezoelectric Ceramic. IEEE Access. 2021;9:120512-120524
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)