Co-benefits from sustainable dietary shifts for population and environmental health: an assessment from a large European cohort study
Permanent lenke
https://hdl.handle.net/10037/23513Dato
2021-10-22Type
Journal articleTidsskriftartikkel
Peer reviewed
Forfatter
Laine, Jessica E; Huybrechts, Inge; Gunter, Marc J; Ferrari, Pietro; Weiderpass, Elisabete; Tsilidis, Kostas; Aune, Dagfinn; Schulze, Matthias B; Bergmann, Manuela; Boer, Jolanda M A; Agnoli, Claudia; Ericson, Ulrika; Stubbendorff, Anna; Ibsen, Daniel B; Dahm, Christina Catherine; Deschasaux, Mélanie; Touvier, Mathilde; Kesse-Guyot, Emmanuelle; Sánchez Pérez, Maria-Jose; Rodríguez Barranco, Miguel; Tong, Tammy Y N; Papier, Keren; Knuppel, Anika; Boutron-Ruault, Marie-Christine; Mancini, Francesca; Severi, Gianluca; Srour, Bernard; Kühn, Tilman; Masala, Giovanna; Agudo, Antonio; Skeie, Guri; Rylander, Charlotta; Sandanger, Torkjel M; Vineis, PaoloSammendrag
Methods - Using data from 443 991 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, a multicentre prospective cohort, we estimated associations between dietary contributions to greenhouse gas emissions and land use and all-cause and cause-specific mortality and incident cancers using Cox proportional hazards regression models. The main exposures were modelled as quartiles. Co-benefits, encompassing the potential effects of alternative diets on all-cause mortality and cancer and potential reductions in greenhouse gas emissions and land use, were estimated with counterfactual attributable fraction intervention models, simulating potential effects of dietary shifts based on the EAT–Lancet reference diet.
Findings - In the pooled analysis, there was an association between levels of dietary greenhouse gas emissions and all-cause mortality (adjusted hazard ratio [HR] 1·13 [95% CI 1·10–1·16]) and between land use and all-cause mortality (1·18 [1·15–1·21]) when comparing the fourth quartile to the first quartile. Similar associations were observed for cause-specific mortality. Associations were also observed between all-cause cancer incidence rates and greenhouse gas emissions, when comparing the fourth quartile to the first quartile (adjusted HR 1·11 [95% CI 1·09–1·14]) and between all-cause cancer incidence rates and land use (1·13 [1·10–1·15]); however, estimates differed by cancer type. Through counterfactual attributable fraction modelling of shifts in levels of adherence to the EAT–Lancet diet, we estimated that up to 19–63% of deaths and up to 10–39% of cancers could be prevented, in a 20-year risk period, by different levels of adherence to the EAT–Lancet reference diet. Additionally, switching from lower adherence to the EAT–Lancet reference diet to higher adherence could potentially reduce food-associated greenhouse gas emissions up to 50% and land use up to 62%.
Interpretation Our results indicate that shifts towards universally sustainable diets could lead to co-benefits, such as minimising diet-related greenhouse gas emissions and land use, reducing the environmental footprint, aiding in climate change mitigation, and improving population health.
Funding European Commission (DG-SANCO), the International Agency for Research on Cancer (IARC), MRC Early Career Fellowship (MR/M501669/1).