ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine

Permanent link
https://hdl.handle.net/10037/24057
DOI
https://doi.org/10.1038/s41598-021-01295-2
Thumbnail
View/Open
article.pdf (1.796Mb)
Published version (PDF)
Date
2021-11-09
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Thambawita, Vajira; Isaksen, Jonas L.; Hicks, Steven A.; Ghouse, Jonas; Ahlberg, Gustav; Linneberg, Allan; Grarup, Niels; Ellervik, Christina; Olesen, Morten Salling; Hansen, Torben; Graff, Claus; Holstein-Rathlou, Niels-Henrik; Strümke, Inga; Hammer, Hugo L.; Maleckar, Mary M.; Halvorsen, Pål; Riegler, Michael A.; Kanters, Jørgen K.
Abstract
Recent global developments underscore the prominent role big data have in modern medical science. But privacy issues constitute a prevalent problem for collecting and sharing data between researchers. However, synthetic data generated to represent real data carrying similar information and distribution may alleviate the privacy issue. In this study, we present generative adversarial networks (GANs) capable of generating realistic synthetic DeepFake 10-s 12-lead electrocardiograms (ECGs). We have developed and compared two methods, named WaveGAN* and Pulse2Pulse. We trained the GANs with 7,233 real normal ECGs to produce 121,977 DeepFake normal ECGs. By verifying the ECGs using a commercial ECG interpretation program (MUSE 12SL, GE Healthcare), we demonstrate that the Pulse2Pulse GAN was superior to the WaveGAN* to produce realistic ECGs. ECG intervals and amplitudes were similar between the DeepFake and real ECGs. Although these synthetic ECGs mimic the dataset used for creation, the ECGs are not linked to any individuals and may thus be used freely. The synthetic dataset will be available as open access for researchers at OSF.io and the DeepFake generator available at the Python Package Index (PyPI) for generating synthetic ECGs. In conclusion, we were able to generate realistic synthetic ECGs using generative adversarial neural networks on normal ECGs from two population studies, thereby addressing the relevant privacy issues in medical datasets.
Publisher
Nature
Citation
Thambawita, Isaksen, Hicks, Ghouse, Ahlberg, Linneberg, Grarup, Ellervik, Olesen, Hansen, Graff, Holstein-Rathlou, Strümke, Hammer, Maleckar, Halvorsen, Riegler, Kanters. DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine. Scientific Reports. 2021;11(1)
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3252]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)