ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Evaluation on Diverse Machine Learning Algorithms for Hourly Univariate Wind Power Prediction in the Arctic

Permanent link
https://hdl.handle.net/10037/24257
DOI
https://doi.org/10.1088/1742-6596/2141/1/012016
Thumbnail
View/Open
article.pdf (940.1Kb)
Published version (PDF)
Date
2021-12-23
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Chen, Hao; Birkelund, Yngve
Abstract
Wind power forecasting is crucial for wind power systems, grid load balance, maintenance, and grid operation optimization. The utilization of wind energy in the Arctic regions helps reduce greenhouse gas emissions in this environmentally vulnerable area. In the present study, eight various models, seven of which are representative machine learning algorithms, are used to make 1, 2, and 3 step hourly wind power predictions for five wind parks inside the Norwegian Arctic regions, and their performance is compared. Consequently, we recommend the persistence model, multilayer perceptron, and support vector regression for univariate time-series wind power forecasting within the time horizon of 3 hours.
Publisher
IOP Publishing
Citation
Chen H, Birkelund Y. An Evaluation on Diverse Machine Learning Algorithms for Hourly Univariate Wind Power Prediction in the Arctic. Journal of Physics: Conference Series (JPCS). 2021:1-7
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (teknologi og sikkerhet) [361]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)