ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

IA-SSLM: Irregularity-Aware Semi-Supervised Deep Learning Model for Analyzing Unusual Events in Crowds

Permanent lenke
https://hdl.handle.net/10037/24302
DOI
https://doi.org/10.1109/ACCESS.2021.3081050
Thumbnail
Åpne
article.pdf (1.313Mb)
Publisert versjon (PDF)
Dato
2021-05-17
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Aljaloud, Abdulaziz Salamah; Ullah, Habib
Sammendrag
Analyzing unusual events is significantly important for video surveillance to ensure people safety. These events are characterized by irregular patterns that do not conform to the expected behavior in the surveillance scenes. We present a novel irregularity-aware semi-supervised deep learning model (IA-SSLM) for detection of unusual events. While most existing works depend on the availability of large amount of labeled data for training, our proposed method utilizes a semi-supervised deep model to automatically learn feature representations from limited number of labeled data samples. Our method extracts meaningful information from both labeled and unlabeled data during the training stage to improve the performance. For this purpose, we explore the concept of consistency regularization and entropy minimization to output confident predictions on unlabeled data. For experimental analysis, we consider various standard and diverse datasets. The results show that our IA-SSLM method outperforms several reference methods using different performance metrics.
Forlag
IEEE
Sitering
Aljaloud, Ullah. IA-SSLM: Irregularity-Aware Semi-Supervised Deep Learning Model for Analyzing Unusual Events in Crowds. IEEE Access. 2021;9:73327-73334
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring