ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electron Beam Sterilization of Poly(Methyl Methacrylate)—Physicochemical and Biological Aspects

Permanent link
https://hdl.handle.net/10037/24446
DOI
https://doi.org/10.1002/mabi.202000379
Thumbnail
View/Open
article.pdf (1.850Mb)
Accepted manuscript version (PDF)
Date
2021-02-24
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Sharifi, Sina; Islam, Mohammad Mirazul; Sharifi, Hannah; Islam, Rakibul; Huq, Tahmida N.; Nilsson, Per; Mollnes, Tom Eirik; Tran, Khoa D.; Patzer, Corrina; Dohlman, Claes H.; Patra, Hirak K.; Paschalis, Eleftherios I.; Gonzalez-Andrades, Miguel; Chodosh, James
Abstract
Electron beam (E-beam) irradiation is an attractive and efficient method for sterilizing clinically implantable medical devices made of natural and/or synthetic materials such as poly(methyl methacrylate) (PMMA). As ionizing irradiation can affect the physicochemical properties of PMMA, understanding the consequences of E-beam sterilization on the intrinsic properties of PMMA is vital for clinical implementation. A detailed assessment of the chemical, optical, mechanical, morphological, and biological properties of medical-grade PMMA after E-beam sterilization at 25 and 50 kiloGray (kGy) is reported. Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry studies indicate that E-beam irradiation has minimal effect on the chemical properties of the PMMA at these doses. While 25 kGy irradiation does not alter the mechanical and optical properties of the PMMA, 50 kGy reduces the flexural strength and transparency by 10% and 2%, respectively. Atomic force microscopy demonstrates that E-beam irradiation reduces the surface roughness of PMMA in a dose dependent manner. Live-Dead, AlamarBlue, immunocytochemistry, and complement activation studies show that E-beam irradiation up to 50 kGy has no adverse effect on the biocompatibility of the PMMA. These findings suggest that E-beam irradiation at 25 kGy may be a safe and efficient alternative for PMMA sterilization.
Description
This is the peer reviewed version of the following article: Sharifi, S., Islam, M.M., Sharifi, H., Islam, R., Huq, T.N., Nilsson, P.H., ... Chodosh, J. (2021). Electron Beam Sterilization of Poly(Methyl Methacrylate)—Physicochemical and Biological Aspects. Macromolecular Bioscience, 21(4), 2000379, which has been published in final form at https://doi.org/10.1002/mabi.202000379. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Publisher
Wiley
Citation
Sharifi, S., Islam, M.M., Sharifi, H., Islam, R., Huq, T.N., Nilsson, P.H., ... Chodosh, J. (2021). Electron Beam Sterilization of Poly(Methyl Methacrylate)—Physicochemical and Biological Aspects. Macromolecular Bioscience, 21(4), 2000379
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3245]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)