ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • Vis innførsel
  •   Hjem
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated segmentation of magnetic resonance bone marrow signal: a feasibility study

Permanent lenke
https://hdl.handle.net/10037/25955
DOI
https://doi.org/10.1007/s00247-021-05270-x
Thumbnail
Åpne
article.pdf (1.293Mb)
Publisert versjon (PDF)
Dato
2022-02-02
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
von Brandis, Elisabeth; Jenssen, Håvard Bjørke; Avenarius, Derk Frederik Matthaus; Bjørnerud, Atle; Flatø, Berit; Tomterstad, Anders; Lilleby, Vibke; Rosendahl, Karen; Sakinis, Tomas; Zadig, Pia Karin Karlsen; Müller, Lil-Sofie Ording
Sammendrag
Background - Manual assessment of bone marrow signal is time-consuming and requires meticulous standardisation to secure adequate precision of findings.

Objective - We examined the feasibility of using deep learning for automated segmentation of bone marrow signal in children and adolescents.

Materials and methods - We selected knee images from 95 whole-body MRI examinations of healthy individuals and of children with chronic non-bacterial osteomyelitis, ages 6–18 years, in a longitudinal prospective multi-centre study cohort. Bone marrow signal on T2-weighted Dixon water-only images was divided into three color-coded intensity-levels: 1 = slightly increased; 2 = mildly increased; 3 = moderately to highly increased, up to fluid-like signal. We trained a convolutional neural network on 85 examinations to perform bone marrow segmentation. Four readers manually segmented a test set of 10 examinations and calculated ground truth using simultaneous truth and performance level estimation (STAPLE). We evaluated model and rater performance through Dice similarity coefficient and in consensus.

Results - Consensus score of model performance showed acceptable results for all but one examination. Model performance and reader agreement had highest scores for level-1 signal (median Dice 0.68) and lowest scores for level-3 signal (median Dice 0.40), particularly in examinations where this signal was sparse.

Conclusion - It is feasible to develop a deep-learning-based model for automated segmentation of bone marrow signal in children and adolescents. Our model performed poorest for the highest signal intensity in examinations where this signal was sparse. Further improvement requires training on larger and more balanced datasets and validation against ground truth, which should be established by radiologists from several institutions in consensus.

Forlag
Springer
Sitering
von Brandis, Jenssen, Avenarius, Bjørnerud, Flatø, Tomterstad A, Lilleby V, Rosendahl, Sakinis, Zadig, Müller L-SO. Automated segmentation of magnetic resonance bone marrow signal: a feasibility study. Pediatric Radiology. 2022
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (klinisk medisin) [1974]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring