Combined X-Ray Computed Tomography and X-Ray Fluorescence Drill Core Scanning for 3-D Rock and Ore Characterization: Implications for the Lovisa Stratiform Zn-Pb Deposit and Its Structural Setting, Bergslagen, Sweden
Permanent lenke
https://hdl.handle.net/10037/26163Dato
2022-03-29Type
Journal articleTidsskriftartikkel
Peer reviewed
Forfatter
Luth, Stefan; Sahlström, Fredrik; Bergqvist, Mikael; Hansson, Alexander; Lynch, Edward P.; Sädbom, Stefan; Jonsson, Erik; Andersson, Stefan S.; Arvanitidis, NikolaosSammendrag
We present the results of a pilot study that integrates automated drill core scanning technology based on simultaneous X-ray computed tomography (XCT) and X-ray fluorescence (XRF) analyses to provide high-spatialresolution (<0.2 mm) information on 3-D rock textures and structures, chemical composition, and density.
Testing of its applicability for mineral exploration and research was performed by scanning and analyzing
1,500 m of drill core from the Paleoproterozoic Lovisa stratiform Zn-Pb sulfide deposit, which is part of a larger
mineral system also including Cu-Co and Fe-(rare earth element) mineralization, hosted by the highly strained
West Bergslagen boundary zone in south-central Sweden.
The obtained scanning data complements data derived from structural field mapping, drill core logs, and
chemical analysis as well as from multiscale 3-D geologic modeling at Lovisa. Data integration reveals macroand mesoscopic folding of S0/S1 by asymmetric steeply SE-plunging F2 folds and N-striking vertical F3 folds.
Stretching lineations, measured directly from the scanning imagery, trend parallel to F2 fold hinges and modeled ore shoots at the nearby Håkansboda Cu-Co and Stråssa and Blanka Fe deposits. The textural character of
the Lovisa ore zones is revealed in 3-D by XCT-XRF scanning and highlight remobilization of Zn and Pb from
primary layering into ductile and brittle structures. The downhole bulk geochemical trends seen in scanning
and traditional assay data are generally comparable but with systematic variations for some elements due to
currently unresolved XRF spectral overlaps (e.g., Co and Fe).
The 3-D deformation pattern at Lovisa is explained by D2 sinistral transpression along the West Bergslagen
boundary zone in response to regional north-south crustal shortening at ca. 1.84–1.81 Ga. Local refolding was
caused by D3 regional east-west crustal shortening resulting in dextral transpression along the West Bergslagen boundary zone, presumably at ca. 1.80–1.76 Ga. Based on polyphase ore textures and modeled ore shoots
aligned to F2 fold hinges, we postulate that D2 and D3 transpressive deformation exerted both a strong control
on ore remobilization and the resulting orebody geometries at Lovisa and neighboring deposits within the West
Bergslagen boundary zone.
We conclude that the combined XCT-XRF drill core scanning technique provides a valuable tool for 3-D ore
and rock characterization, generating continuous downhole data sets, with the potential for increasing precision
and efficiency in mineral exploration and mining.
Forlag
GeoScienceWorldSitering
Luth S, Sahlström F, Bergqvist M, Hansson, Lynch EP, Sädbom S, Jonsson E, Andersson SS, Arvanitidis N. Combined X-Ray Computed Tomography and X-Ray Fluorescence Drill Core Scanning for 3-D Rock and Ore Characterization: Implications for the Lovisa Stratiform Zn-Pb Deposit and Its Structural Setting, Bergslagen, Sweden. Economic Geology and The Bulletin of the Society of Economic Geologists. 2022;117(6):1255-1273Metadata
Vis full innførselSamlinger
Copyright 2022 The Author(s)