ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for industriell teknologi
  • Artikler, rapporter og annet (industriell teknologi)
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for industriell teknologi
  • Artikler, rapporter og annet (industriell teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computationally efficient approximate dynamic programming for multi-site production capacity planning with uncertain demands

Permanent link
https://hdl.handle.net/10037/26276
DOI
https://doi.org/10.1007/s10696-022-09458-7
Thumbnail
View/Open
article.pdf (2.591Mb)
Accepted manuscript version (PDF)
Date
2022-07-05
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Chen-Yang, Cheng; Pourhejazy, Pourya; Tzu-li, Chen
Abstract
With globalization and rapid technological-economic development accelerating the market dynamics, consumers' demand is becoming more volatile and diverse. In this situation, capacity adjustment as an operational strategic decision plays a major role to ensure supply chain responsiveness while maintaining costs at a reasonable norm. This study contributes to the literature by developing computationally efficient approximate dynamic programming approaches for production capacity planning considering uncertainties and demand interdependence in a multi-factory multi-product supply chain setting. For this purpose, the k-Nearest-Neighbor-based Approximate Dynamic Programming and the Rolling-Horizon-based Approximate Dynamic Programming are developed to enable real-time decision support while ensuring the robustness of the outcomes in stochastic decision environments. Given the market volatilities in the Thin Film Transistor-Liquid Crystal Display industry, a real case from this sector is investigated to evaluate the applicability of the developed approach and provide insights for other industry situations. The developed method is less complex to implement, and numerical experiments showed that it is also computationally more efficient compared to Stochastic Dynamic Programming.
Publisher
Springer
Citation
Chen-Yang C, Pourhejazy P, Tzu-li. Computationally efficient approximate dynamic programming for multi-site production capacity planning with uncertain demands. Flexible Services and Manufacturing Journal. 2022
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (industriell teknologi) [195]
Copyright 2022 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)