ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • Vis innførsel
  •   Hjem
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fine-scale differences in eukaryotic communities inside and outside salmon aquaculture cages revealed by eDNA metabarcoding

Permanent lenke
https://hdl.handle.net/10037/26447
DOI
https://doi.org/10.3389/fgene.2022.957251
Thumbnail
Åpne
article.pdf (3.710Mb)
Publisert versjon (PDF)
Dato
2022-08-26
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Turon, Marta; Nygaard, Markus; Guri, Gledis; Wangensteen, Owen S.; Præbel, Kim
Sammendrag
Aquaculture impacts on marine benthic ecosystems are widely recognized and monitored. However, little is known about the community changes occurring in the water masses surrounding aquaculture sites. In the present study, we studied the eukaryotic communities inside and outside salmonid aquaculture cages through time to assess the community changes in the neighbouring waters of the farm. Water samples were taken biweekly over five months during the production phase from inside the cages and from nearby points located North and South of the salmon farm. Eukaryotic communities were analyzed by eDNA metabarcoding of the partial COI Leray-XT fragment. The results showed that eukaryotic communities inside the cages were significantly different from those in the outside environment, with communities inside the cages having higher diversity values and more indicator species associated with them. This is likely explained by the appearance of fouling species that colonize the artificial structures, but also by other species that are attracted to the cages by other means. Moreover, these effects were highly localized inside the cages, as the communities identified outside the cages, both North and South, had very similar eukaryotic composition at each point in time. Overall, the eukaryotic communities, both inside and outside the cages, showed similar temporal fluctuations through the summer months, with diversity peaks occurring at the end of July, beginning of September, and in the beginning of November, with the latter showing the highest Shannon diversity and richness values. Hence, our study suggests that seasonality, together with salmonid aquaculture, are the main drivers of eukaryotic community structure in surface waters surrounding the farm.
Forlag
Frontiers Media
Sitering
Turon M, Nygaard, Guri G, Wangensteen OS, Præbel K. Fine-scale differences in eukaryotic communities inside and outside salmon aquaculture cages revealed by eDNA metabarcoding. Frontiers in Genetics. 2022;13
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (Norges fiskerihøgskole) [1053]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring