ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Locally Resolved Stress-State in Samples During Experimental Deformation: Insights Into the Effect of Stress on Mineral Reactions

Permanent link
https://hdl.handle.net/10037/26740
DOI
https://doi.org/10.1029/2022JB024814
Thumbnail
View/Open
article.pdf (6.558Mb)
Published version (PDF)
Date
2022-08-17
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Cionoiu, S.; Moulas, E.; Stunitz, Holger; Tajcmanova, L.
Abstract
Understanding conditions in the Earth's interior requires data derived from laboratory experiments. Such experiments provide important insights into the conditions under which mineral reactions take place as well as processes that control the localization of deformation in the deep Earth. We performed Griggs-type general shear experiments in combination with numerical models, based on continuum mechanics, to quantify the effect of evolving sample geometry of the experimental assembly. The investigated system is constituted by CaCO3 and the experimental conditions are near the calcite-aragonite phase transition. All experimental samples show a heterogeneous distribution of the two CaCO3 polymorphs after deformation. This distribution is interpreted to result from local stress variations. These variations are in agreement with the observed phase-transition patterns and grain-size gradients across the experimental sample. The comparison of the mechanical models with the sample provides insights into the distribution of local mechanical parameters during deformation. Our results show that, despite the use of homogeneous sample material (here calcite), stress variations develop due to the experimental geometry. The comparison of experiments and numerical models indicates that aragonite formation is primarily controlled by the spatial distribution of mechanical parameters. Furthermore, we monitor the maximum pressure and σ1 that is experienced in every part of our model domain for a given amount of time. We document that local pressure (mean stress) values are responsible for the transformation. Therefore, if the role of stress as a thermodynamic potential is investigated in similar experiments, an accurate description of the state of stress is required.
Publisher
Wiley
Citation
Cionoiu, Moulas, Stunitz H, Tajcmanova L. Locally Resolved Stress-State in Samples During Experimental Deformation: Insights Into the Effect of Stress on Mineral Reactions. Journal of Geophysical Research (JGR): Solid Earth. 2022;127(8)
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (geovitenskap) [809]
Copyright 2022 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)