Vis enkel innførsel

dc.contributor.authorHemmingsen, Lisa Myrseth
dc.contributor.authorPanchai, Pimmat
dc.contributor.authorJulin, Kjersti
dc.contributor.authorBasnet, Purusotam
dc.contributor.authorNystad, Mona
dc.contributor.authorJohannessen, Mona
dc.contributor.authorSkalko-Basnet, Natasa
dc.date.accessioned2022-10-03T05:15:17Z
dc.date.available2022-10-03T05:15:17Z
dc.date.issued2022-09-29
dc.description.abstractInfected chronic skin wounds and other skin infections are increasingly putting pressure on the health care providers and patients. The pressure is especially concerning due to the rise of antimicrobial resistance and biofilm-producing bacteria that further impair treatment success. Therefore, innovative strategies for wound healing and bacterial eradication are urgently needed; utilization of materials with inherent biological properties could offer a potential solution. Chitosan is one of the most frequently used polymers in delivery systems. This bioactive polymer is often regarded as an attractive constituent in delivery systems due to its inherent antimicrobial, anti-inflammatory, anti-oxidative, and wound healing properties. However, lipid-based vesicles and liposomes are generally considered more suitable as delivery systems for skin due to their ability to interact with the skin structure and provide prolonged release, protect the antimicrobial compound, and allow high local concentrations at the infected site. To take advantage of the beneficial attributes of the lipid-based vesicles and chitosan, these components can be combined into chitosan-containing liposomes or chitosomes and chitosan-coated liposomes. These systems have previously been investigated for use in wound therapy; however, their potential in infected wounds is not fully investigated. In this study, we aimed to investigate whether both the chitosan-containing and chitosan-coated liposomes tailored for infected wounds could improve the antimicrobial activity of the membrane-active antimicrobial chlorhexidine, while assuring both the anti-inflammatory activity and cell compatibility. Chlorhexidine was incorporated into three different vesicles, namely plain (chitosan-free), chitosan-containing and chitosan-coated liposomes that were optimized for skin wounds. Their release profile, antimicrobial activities, anti-inflammatory properties, and cell compatibility were assessed in vitro. The vesicles comprising chitosan demonstrated slower release rate of chlorhexidine and high cell compatibility. Additionally, the inflammatory responses in murine macrophages treated with these vesicles were reduced by about 60% compared to non-treated cells. Finally, liposomes containing both chitosan and chlorhexidine demonstrated the strongest antibacterial effect against Staphylococcus aureus. Both chitosan-containing and chitosan-coated liposomes comprising chlorhexidine could serve as excellent platforms for the delivery of membrane-active antimicrobials to infected wounds as confirmed by improved antimicrobial performance of chlorhexidine.en_US
dc.identifier.citationHemmingsen, Panchai, Julin, Basnet, Nystad, Johannessen, Skalko-Basnet. Chitosan-based delivery system enhances antimicrobial activity of chlorhexidine. Frontiers in Microbiology. 2022en_US
dc.identifier.cristinIDFRIDAID 2057383
dc.identifier.doi10.3389/fmicb.2022.1023083
dc.identifier.issn1664-302X
dc.identifier.urihttps://hdl.handle.net/10037/26953
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.relation.ispartofHemmingsen, L.M. (2022). Advanced topical delivery systems for membrane-active antimicrobials. Exploring nature to improve antimicrobial wound therapy. (Doctoral thesis). <a href=https://hdl.handle.net/10037/27103>https://hdl.handle.net/10037/27103</a>.
dc.relation.journalFrontiers in Microbiology
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleChitosan-based delivery system enhances antimicrobial activity of chlorhexidineen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)