Structural and fluid-migration control on hill-hole pair formation: Evidence from high-resolution 3D seismic data from the SW Barents Sea
Permanent lenke
https://hdl.handle.net/10037/27570Dato
2022-11-11Type
Journal articleTidsskriftartikkel
Peer reviewed
Forfatter
Bellwald, Benjamin; Stokke, Henrik Henriksen; Winsborrow, Monica; Planke, Sverre; Sættem, Joar; Lebedeva-Ivanova, Nina; Hafeez, Amer; Kurjanski, Bartosz; Myklebust, Reidun Alice; Polteau, StephaneSammendrag
The seismic datasets allowed the identification of 55 hill-hole pairs along the buried unconformity. The hills are characterized by chaotic to homogenous seismic facies forming up to 19 m high mounds, each covering areas of 2000–644,000 m2. The holes form depressions between 1 and 44 m deep and 2000–704,000 m2 in areal extent, which cut into preglacial Mesozoic bedrock and later infilled by glacial till. The holes are often found above fault terminations. High-amplitude reflections identified along the faults and in the strata below the holes are interpreted as shallow gas migrating upward towards the glacial unconformity. Geochemical data of the seabed sediment cores further indicates an association between hill-hole pair occurrence and present-day thermogenic hydrocarbon seepage.
The hill-hole pairs geometries were also used to identify five paleo-ice-flow directions along the glacial unconformity. These ice flows exhibit polythermal regimes, and four of them are parallel to ice-stream flow sets interpreted from glacial lineations. The integrated interpretation supports localized fault-related basal freezing of the Barents Sea Ice Sheet which resulted in the formation of hill-hole pairs when the ice sheet moved. In this context, the faults functioned as migration pathways for deep thermogenic fluids, possibly sourced from leaking Jurassic reservoirs.>p>
This study highlights the importance of the underlying geology for ice-sheet dynamics: While hill-hole pairs above glacial till appear to be commonly associated with dispersed gas hydrates, hill-hole pairs above bedrock additionally indicate a link to underlying fault systems and hydrocarbon reservoirs. Freeze-on of underlying bedrock to the basal ice along the strike of faults in sedimentary bedrock explains deeper hill-hole pairs with smaller extents along the glacial unconformity compared to areally larger but shallow hill-hole pairs detected above glacial till on modern seabeds. Such close association between paleo-thermogenic gas seepage and the location of hill-hole pairs strongly support that hill-hole pairs are excellent markers revealing exit points of fluid migration pathways in petroleum system models.