dc.contributor.author | Erlandsson, Viveka | |
dc.contributor.author | Gendulphe, Matthieu | |
dc.contributor.author | Pasquinelli, Irene | |
dc.contributor.author | Souto, Juan | |
dc.date.accessioned | 2023-09-01T11:18:04Z | |
dc.date.available | 2023-09-01T11:18:04Z | |
dc.date.issued | 2023-05-12 | |
dc.description.abstract | Let S be a connected non-orientable surface with negative Euler characteristic and of finite type. We describe the possible closures in ML
and PML
of the mapping class group orbits of measured laminations, projective measured laminations and points in Teichmüller space. In particular we obtain a characterization of the closure in ML
of the set of weighted two-sided curves. | en_US |
dc.identifier.citation | Erlandsson, Gendulphe, Pasquinelli, Souto. Mapping class group orbit closures for non-orientable surfaces. Geometric and Functional Analysis. 2023 | en_US |
dc.identifier.cristinID | FRIDAID 2151478 | |
dc.identifier.doi | 10.1007/s00039-023-00638-7 | |
dc.identifier.issn | 1016-443X | |
dc.identifier.issn | 1420-8970 | |
dc.identifier.uri | https://hdl.handle.net/10037/30618 | |
dc.language.iso | eng | en_US |
dc.publisher | Springer Nature | en_US |
dc.relation.journal | Geometric and Functional Analysis | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2023 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.title | Mapping class group orbit closures for non-orientable surfaces | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |