ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Single-shot multispectral quantitative phase imaging of biological samples using deep learning

Permanent link
https://hdl.handle.net/10037/32992
DOI
https://doi.org/10.1364/AO.482788
Thumbnail
View/Open
article.pdf (2.561Mb)
Accepted manuscript version (PDF)
Date
2023-05-16
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Bhatt, Sunil; Butola, Ankit; Kumar, Anand; Thapa, Pramila; Joshi, Akshay; Jadhav, Suyog S.; Singh, Neetu; Prasad, Dilip K.; Agarwal, Krishna; Mehta, Dalip Singh
Abstract
Multispectral quantitative phase imaging (MS-QPI) is a high-contrast label-free technique for morphological imaging of the specimens. The aim of the present study is to extract spectral dependent quantitative information in single-shot using a highly spatially sensitive digital holographic microscope assisted by a deep neural network. There are three different wavelengths used in our method: 𝜆=532 , 633, and 808 nm. The first step is to get the interferometric data for each wavelength. The acquired datasets are used to train a generative adversarial network to generate multispectral (MS) quantitative phase maps from a single input interferogram. The network was trained and validated on two different samples: the optical waveguide and MG63 osteosarcoma cells. Validation of the present approach is performed by comparing the predicted MS phase maps with numerically reconstructed (FT+TIE ) phase maps and quantifying with different image quality assessment metrices.
Publisher
Optica Publishing Group
Citation
Bhatt, Butola, Kumar, Thapa, Joshi, Jadhav, Singh, Prasad, Agarwal, Mehta. Single-shot multispectral quantitative phase imaging of biological samples using deep learning. Applied Optics. 2023;62(15):3989-3999
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2023 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)