Transferability of graph neural networks: An extended graphon approach
Permanent lenke
https://hdl.handle.net/10037/33224Dato
2022-11-28Type
Journal articleTidsskriftartikkel
Peer reviewed
Sammendrag
In this paper, we consider a model of transferability based on graphon analysis. Graphons are limit objects of graphs, and, in the graph paradigm, two graphs represent the same phenomenon if both approximate the same graphon. Our main contributions can be summarized as follows: 1) we prove that any fixed GCNN with continuous filters is transferable under graphs that approximate the same graphon, 2) we prove transferability for graphs that approximate unbounded graphon shift operators, which are defined in this paper, and 3) we obtain non-asymptotic approximation results, proving linear stability of GCNNs. This extends current state-of-the-art results which show asymptotic transferability for polynomial filters under graphs that approximate bounded graphons.