Near-surface characterization using shear-wave resonances: A case study from offshore Svalbard, Norway
Permanent link
https://hdl.handle.net/10037/34149Date
2024-06-14Type
Journal articleTidsskriftartikkel
Peer reviewed
Author
Taweesintananon, Kittinat; Rørstadbotnen, Robin Andre; Landrø, Martin; Johansen, Ståle Emil; Arntsen, Børge; Forwick, Matthias; Hansen, AlfredAbstract
Shear-wave (S-wave) resonances are typically observed when the surficial marine sediments over a rock substrate have relatively low S-wave velocities. We observe these phenomena using ocean-bottom fiber-optic distributed acoustic sensing (DAS) in two subsea fiber-optic telecommunication cables in Svalbard, Norway. Strong seismic energy from sufficiently large earthquakes is required to trigger and enhance the multiple-order modes of S-wave resonances. Here, we use the interpreted S-wave resonance frequencies of the first two modes to determine the thickness and the S-wave velocity of the near-surface low-velocity layer (LVL) beneath the seafloor. In addition, we use existing active P-wave seismic reflection data to determine the LVL thickness and to help build a more accurate S-wave velocity model from the S-wave resonance frequencies. The estimated S-wave velocity varies laterally within the LVL formation. Here, we find that the sediments or deposits with high S-wave velocity presented in the estimated LVL model agree with the distribution of some glacigenic sediments and landforms deposited in the survey area. Therefore, S-wave resonances measured by ocean-bottom DAS can be used to characterize the corresponding near-surface LVLs
Publisher
Society of Exploration GeophysicistsCitation
Taweesintananon K, Rørstadbotnen RA, Landrø M, Johansen SE, Arntsen B, Forwick M, Hansen A. Near-surface characterization using shear-wave resonances: A case study from offshore Svalbard, Norway. Geophysics. 2024;89(4):B317-B327Metadata
Show full item recordCollections
Copyright 2024 The Author(s)