Formation of biofilms is an important adaptive strategy that bacteria employ to endure challenging conditions. This thesis delves into the evolution of the pathogen
Vibrio cholerae in biofilms with a focus on biofilm adaptation, c-di-GMP signaling and β-lactamase evolution. Paper 1 improved upon the genome of
V. cholerae C6706 and linked every open reading frame to the current reference strain
V. cholerae N16961. A genetic analysis identified multiple differences between
V. cholerae C6706 and N16961. Experimental evidence suggested that these genetic differences affected biofilm formation and motility through alterations in quorum sensing and c-di-GMP turnover. Paper 2 examined biofilm adaptation during biofilm evolution. Strong selection for biofilm formation markedly improved the biofilm forming capacity of
V. cholerae through mutations in the polyamine-regulated, bi-functional c-di-GMP-metabolizing enzyme MbaA. Mutagenesis studies and enzyme kinetics indicated that mutations in MbaA activated the diguanylate cyclase activity of the GGDEF-domain, reduced phosphodiesterase activity of the EAL-domain and decoupled MbaA from polyamine-mediated regulation via NspS. This suggests that the increase in biofilm formation comes from shifting the enzymatic output of MbaA from degradation to synthesis of c-di-GMP. Paper 3 investigated how β-lactamases affect biofilm formation in
V. cholerae and how the biofilm lifestyle can affect the evolution of β-lactamases. A wide range of β-lactamases impaired biofilm formation in
V. cholerae. Directed evolution coupled with selection for biofilm formation selected for mutations that reversed biofilm inhibition. This suggests that the biofilm environment can influence the evolutionary trajectories of β-lactamases. Overall, this thesis expands our understanding of the biology and evolution of
V. cholerae and underscores the importance of understanding pathogen evolution in biofilms. Additionally, it suggests that the c-di-GMP signaling system is a potent evolutionary target for bacterial adaptation.
Biofilmdannelse er en viktig overlevelsesstrategi bakterier bruker for å tilpasse seg utfordrende miljøer. Denne avhandlingen undersøker evolusjonen av patogenet
Vibrio cholerae med fokus på biofilmtilpasning, c-di-GMP-signalering og β-laktamaseevolusjon. Arbeid 1 forbedret genomet til modelstammen
V. cholerae C6706 og knyttet hvert gen opp mot den nåværende referansestammen
V. cholerae N16961. Genetisk analyse identifiserte flere mutasjoner i
V. cholerae C6706 sammenlignet med N16961. Sammenligning av biofilmdannelse og motilitet avdekte at disse fenotypene varierer mellom
V. cholerae C6706 og N16961. Det skyldes trolig forskjeller i quorumsansing og c-di-GMP signalering mellom
V. cholerae C6706 og N16961. Arbeid 2 avdekte at sterk seleksjon for biofilmdannelse raskt forberedet biofilmdannelse i
V. cholerae gjennom mutasjoner i det bifunksjonelle c-di-GMP-metaboliserende enzymet MbaA. Målrettet mutagenese og enzymkinetikk viste at mutasjoner i MbaA aktiverte diguanylat syklaseaktiviteten til GGDEF-domenet, reduserte fosfodiesteraseaktiviteten til EAL-domenet og avkoblet MbaA fra polyamin-mediert regulering via NspS. Dette tyder på at økningen i biofilmdannelse skyldes at den enzymatiske aktiviteten til MbaA endres fra degradering til syntese av c-di-GMP. Arbeid 3 undersøkte hvordan β-laktamaser påvirker biofilmdannelse i
V. cholerae og hvordan biofilmlivsstilen kan påvirke evolusjonen av β-laktamaser. Et bredt spekter av β-laktamaser svekket biofilmdannelse i
V. cholerae. Rettet evolusjon etterfulgt av seleksjon for biofilmdannelse selekterte for mutasjoner som reverserte biofilmhemming. Dette tyder på at biofilm-miljøet kan påvirke evolusjonen til β-laktamaser. Samlet sett utvider denne avhandlingen vår forståelse av
V. cholerae biologi og understreker viktigheten av å forstå hvordan patogener tilapsser seg i biofilmer. Videre tyder våre funn på at c-di-GMP-signaleringssystemet er et potent evolusjonært mål for bakteriell tilpasning.