ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lithospheric mantle heterogeneity beneath the Siberian craton: Evidence from garnet xenocryst database with implications for kimberlite compositions

Permanent link
https://hdl.handle.net/10037/36490
DOI
https://doi.org/10.1016/j.gr.2023.10.021
Thumbnail
View/Open
article.pdf (4.194Mb)
Accepted manuscript version (PDF)
Date
2023-11-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Kostrovitsky, S.I.; Tappe, Sebastian; Yakovlev, D.A.; Ivanov, A.S.; Spetsius, Z.V.; Ashchepkov, I.V.
Abstract
This contribution reports some 16,000 major and minor element analyses of garnet xenocrysts derived from 18 (out of the 21 known) kimberlite fields of the Yakutian Kimberlite Province (YaKP) on the Siberian craton in Russia. Using TiO2–in–garnet as an indicator of heterogeneity within the subcontinental lithospheric mantle (SCLM), as well as garnet mg# (mg#=Mg2+/(Mg2++Fe2+)*100), we distinguish three subpopulations of garnet: 1) high content of TiO2 (0.26–0.50 wt%) and high mg# (80.6–82.6) garnet xenocrysts are common in the southern diamondiferous kimberlite fields; 2) garnet xenocrysts with low content of TiO2 (0.06–0.26 wt%) and relatively high values of mg# (78.8–81.7), which prevail in the northern ‘barren’ kimberlite fields; and 3) three anomalous northern kimberlite fields (Chomurdakh, Ogoner-Yuryakh, Toluopka) characterized by the predominance of garnet xenocrysts with high TiO2 content (0.53–0.78 wt%) at relatively low mg# (76.9–78.3).

It is reasonable to assume that relatively thin cratonic mantle lithosphere beneath the three anomalous kimberlite fields underwent intense metasomatic overprinting by melts and fluids injected from the underlying asthenosphere, which changed the compositions of peridotitic garnets significantly. An interpretation of the data presented in this study is that the generally high TiO2 contents of kimberlites in the northern YaKP (>1.5 wt% TiO2) are a primary magmatic feature of asthenospheric origin because the lithospheric mantle traversed by these kimberlite magmas is TiO2 depleted. We propose a model in which the relatively thin SCLM of the northern Siberian craton provided less opportunity for high-TiO2 asthenospheric kimberlite melts to interact and change compositions on their way to the Earth’s surface. The high-TiO2 kimberlites of the northern YaKP may thus represent a good approximation of the primary compositions of natural kimberlite melts.

Publisher
Elsevier
Citation
Kostrovitsky, Tappe, Yakovlev, Ivanov, Spetsius, Ashchepkov. Lithospheric mantle heterogeneity beneath the Siberian craton: Evidence from garnet xenocryst database with implications for kimberlite compositions. Gondwana Research. 2024;128:298-314
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (geovitenskap) [808]
Copyright 2024 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)