Show simple item record

dc.contributor.advisorJohansen, Terje
dc.contributor.advisorHagerman, Randi
dc.contributor.authorHoem, Gry
dc.date.accessioned2012-09-28T12:12:36Z
dc.date.available2012-09-28T12:12:36Z
dc.date.issued2012-06
dc.description.abstractFragile X syndrome (FXS) is caused by an expanded CGG repeat (>200 repeats) in the 5’ un-translated portion of the fragile mental retardation 1 gene (FMR1) leading to deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA carrier protein that controls the translation of a number of other genes that regulate synaptic development and plasticity. Autism occurs in approximately 30% of FXS cases, and Pervasive Developmental Disorder, Not Otherwise Specified (PDD-NOS) occurs in an additional 30% of cases. Premutation repeat expansions (55 to 200 CGG repeats) may also give rise to autism spectrum disorders (ASD), including both autism and PDD-NOS, through a different molecular mechanism that involves a direct toxic effect of the expanded-CGG-repeat FMR1 mRNA. RNA toxicity can also lead to aging effects including tremor, ataxia and cognitive decline termed the fragile X-associated tremor ataxia syndrome (FXTAS) in premutation carriers in late life. In studies of mice bearing premutation expansions, there is evidence of early post-natal neuronal cell toxicity, manifest as reduced cell longevity, decreased dendritic arborization and altered synaptic morphology. There is also evidence of mitochondrial dysfunction in premutation carriers. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in autism without fragile X mutations. Research regarding dysregulation of neurotransmitter systems in FXS, including metabotropic glutamate receptor 1/5 (mGluR1/5) pathway and GABAA pathways, have led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autismen
dc.identifier.urihttps://hdl.handle.net/10037/4515
dc.identifier.urnURN:NBN:no-uit_munin_4220
dc.language.isoengen
dc.publisherUniversitetet i Tromsøen
dc.publisherUniversity of Tromsøen
dc.rights.accessRightsopenAccess
dc.rights.holderCopyright 2012 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subject.courseID5.-årsoppgaveen
dc.subjectVDP::Medisinske Fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710::Medisinsk molekylærbiologi: 711en
dc.subjectVDP::Medical disciplines: 700::Basic medical, dental and veterinary science disciplines: 710::Medical molecular biology: 711en
dc.subjectVDP::Medisinske Fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710::Medisinsk genetikk: 714en
dc.subjectVDP::Medical disciplines: 700::Basic medical, dental and veterinary science disciplines: 710::Medical genetics: 714en
dc.subjectVDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Psykiatri, barnepsykiatri: 757en
dc.subjectVDP::Medical disciplines: 700::Clinical medical disciplines: 750::Psychiatry, child psychiatry: 757en
dc.subjectVDP::Medisinske Fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710::Klinisk farmakologi: 739en
dc.subjectVDP::Medical disciplines: 700::Basic medical, dental and veterinary science disciplines: 710::Clinical pharmacology: 739en
dc.titleFragile X and autism : intertwined at the molecular level leading to targeted treatmentsen
dc.typeMaster thesisen
dc.typeMastergradsoppgaveen


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)