ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bivalve shell horizons in seafloor pockmarks of the last glacial-interglacial transition suggest a thousand years of methane emissions in the Arctic Ocean

Permanent link
https://hdl.handle.net/10037/8544
DOI
https://doi.org/10.1002/2015GC005980
Thumbnail
View/Open
article.pdf (3.002Mb)
(PDF)
Date
2015-11-05
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Ambrose, William; Panieri, Giuliana; Schneider, Andrea; Plaza-Faverola, Andreia; Carroll, Michael Leslie; Åström, Emmelie; Locke, W.L.; Carroll, JoLynn
Abstract
We studied discrete bivalve shell horizons in two gravity cores from seafloor pockmarks on the Vestnesa Ridge (1200 m water depth) and western Svalbard (798000 N, 068550 W) to provide insight into the temporal and spatial dynamics of seabed methane seeps. The shell beds, dominated by two genera of the family Vesicomyidae: Phreagena s.l. and Isorropodon sp., were 20–30 cm thick and centered at 250– 400 cm deep in the cores. The carbon isotope composition of inorganic (d13C from 213.02& to 12.36&) and organic (d13C from 229.28& to 221.33&) shell material and a two-end member mixing model indicate that these taxa derived between 8% and 43% of their nutrition from chemosynthetic bacteria. In addition, negative d13C values for planktonic foraminifera (26.7& to 23.1&), concretions identified as methane-derived authigenic carbonates, and pyrite-encrusted fossil worm tubes at the shell horizons indicate a sustained paleo-methane seep environment. Combining sedimentation rates with 14C ages for bivalve material from the shell horizons, we estimate the horizons persisted for about 1000 years between approximately 17,707 and 16,680 years B.P. (corrected). The seepage event over a 1000 year time interval was most likely associated with regional stress-related faulting and the subsequent release of overpressurized fluids.
Description
Published version also available at http://dx.doi.org/10.1002/2015GC005980
Publisher
American Geophysical Union (AGU)
Citation
Geochemistry Geophysics Geosystems 2015, 16(12):4108-4129
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (geovitenskap) [816]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)