Bivalve shell horizons in seafloor pockmarks of the last glacial-interglacial transition suggest a thousand years of methane emissions in the Arctic Ocean
Permanent link
https://hdl.handle.net/10037/8544Date
2015-11-05Type
Journal articleTidsskriftartikkel
Peer reviewed
Author
Ambrose, William; Panieri, Giuliana; Schneider, Andrea; Plaza-Faverola, Andreia; Carroll, Michael Leslie; Åström, Emmelie; Locke, W.L.; Carroll, JoLynnAbstract
We studied discrete bivalve shell horizons in two gravity cores from seafloor pockmarks on the
Vestnesa Ridge (1200 m water depth) and western Svalbard (798000 N, 068550 W) to provide insight into
the temporal and spatial dynamics of seabed methane seeps. The shell beds, dominated by two genera of
the family Vesicomyidae: Phreagena s.l. and Isorropodon sp., were 20–30 cm thick and centered at 250–
400 cm deep in the cores. The carbon isotope composition of inorganic (d13C from 213.02& to 12.36&)
and organic (d13C from 229.28& to 221.33&) shell material and a two-end member mixing model indicate
that these taxa derived between 8% and 43% of their nutrition from chemosynthetic bacteria. In addition,
negative d13C values for planktonic foraminifera (26.7& to 23.1&), concretions identified as
methane-derived authigenic carbonates, and pyrite-encrusted fossil worm tubes at the shell horizons indicate
a sustained paleo-methane seep environment. Combining sedimentation rates with 14C ages for
bivalve material from the shell horizons, we estimate the horizons persisted for about 1000 years between
approximately 17,707 and 16,680 years B.P. (corrected). The seepage event over a 1000 year time interval
was most likely associated with regional stress-related faulting and the subsequent release of overpressurized
fluids.
Description
Published version also available at http://dx.doi.org/10.1002/2015GC005980