ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for farmasi
  • Artikler, rapporter og annet (farmasi)
  • View Item
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for farmasi
  • Artikler, rapporter og annet (farmasi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Successful co-encapsulation of benzoyl peroxide and chloramphenicol in liposomes by a novel manufacturing method - dual asymmetric centrifugation

Permanent link
https://hdl.handle.net/10037/10872
DOI
https://doi.org/10.1016/j.ejps.2016.11.017
Thumbnail
View/Open
article.pdf (787.3Kb)
Accepted manuscript version (PDF)
Date
2017-11-16
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Ingebrigtsen, Sveinung Gaarden; Skalko-Basnet, Natasa; Cavalcanti Jacobsen, Cristiane de Albuquerque; Holsæter, Ann Mari
Abstract
Encapsulation of more than one active pharmaceutical ingredient into nanocarriers such as liposomes is an attractive approach to achieve a synergic drug effect and less complicated dosing schedules in multi-drug treatment regimes. Liposomal drug delivery in acne treatment may improve drug efficiency by targeted delivery to pilosebaceous units, reduce adverse effects and improve patient compliance. We therefore aimed to co-encapsulate benzoyl peroxide (BPO) and chloramphenicol (CAM) into liposomes using the novel liposome processing method – dual asymmetric centrifugation (DAC). Liposomes were formed from soybean lecithin, propylene glycol and distilled water (2:1:2 w/v/v ratio), forming a viscous liposome dispersion. Liposomes containing both drugs (BPO-CAM-Lip), single-drug (BPO-Lip and CAM-Lip), and empty liposomes were prepared. Drug entrapment of BPO and CAM was determined by a newly developed HPLC method for simultaneous detection and quantification of both drugs. Encapsulation of around 50% for BPO and 60% for CAM respectively was obtained in both single- drug encapsulated formulations (BPO-Lip and CAM-Lip) and co-encapsulated formulations (BPO- CAM-Lip). Liposome sizes were comparable for all liposome formulations, ranging from 130 to 150 nm mean diameter, with a polydispersity index < 0.2 for all formulations. CAM exhibited a sustained release from all liposomal formulations, whereas BPO appeared retained within the liposomes. BPO retention could be attributed to its poor solubility. However, HaCaT cell toxicity was found dependent on BPO released from the liposomes. In the higher concentration range (4% v/v), liposomal formulations were less cytotoxic than the corresponding drug solutions used as reference. We have demonstrated that DAC is a fast, easy, suitable method for encapsulation of more than one drug within the same liposomes.
Description
Accepted manuscript version. Published version available at http://dx.doi.org/10.1016/j.ejps.2016.11.017
Publisher
Elsevier
Citation
Ingebrigtsen SG, Skalko-Basnet N, Cavalcanti Jacobsen CDAC, Holsæter A M. Successful co-encapsulation of benzoyl peroxide and chloramphenicol in liposomes by a novel manufacturing method - dual asymmetric centrifugation. European Journal of Pharmaceutical Sciences. 2017;97:192-199
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (farmasi) [394]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)