Human articular chondrocytes express functional Leukotriene B4 receptors
Permanent link
https://hdl.handle.net/10037/12318Date
2015-02-09Type
Journal articleTidsskriftartikkel
Peer reviewed
Author
Hansen, Ann Kristin; Indrevik, Jill-Tove; Figenschau, Yngve Anton; Martinez, Inigo Zubiavrre; Sveinbjørnsson, BaldurAbstract
Leukotriene B4 (LTB4) is a potent chemoattractant associated with the development of osteoarthritis (OA), while its receptors BLT1 and BLT2 have been found in synovium and subchondral bone. In this study, we have investigated whether these receptors are also expressed by human cartilage cells and their potential effects on cartilage cells. The expression of LTB4 receptors in native tissue and cultured cells was assessed by immunohistochemistry, immunocytochemistry, polymerase chain reaction (PCR) and electron microscopy. The functional significance of the LTB4 receptor expression was studied by Western blotting, using phospho-specific antibodies in the presence or absence of receptor antagonists. In further studies, the secretion of pro-inflammatory cytokines, growth factors and metalloproteinases by LTB4-stimulated chondrocytes was measured by multiplex protein assays. The effects of LTB4 in cartilage signature gene expression in cultured cells were assessed by quantitative PCR, whereas the LTB4-promoted matrix synthesis was determined using 3D pellet cultures. Both receptors were present in cultured chondrocytes, as was confirmed by immunolabelling and PCR. The relative quantification by PCR demonstrated a higher expression of the receptors in cells from healthy joints compared with OA cases. The stimulation of cultured chondrocytes with LTB4 resulted in a phosphorylation of downstream transcription factor Erk 1/2, which was reduced after blocking BLT1 signalling. No alteration in the secretion of cytokine and metalloproteinases was recorded after challenging cultured cells with LTB4; likewise, cartilage matrix gene expression and 3D tissue synthesis were unaffected. Chondrocytes express BLT1 and BLT2 receptors, and LTB4 activates the downstream Erk 1/2 pathway by engaging the high-affinity receptor BLT1. However, any putative role in cartilage biology could not be revealed, and remains to be clarified.
Description
Accepted manuscript version. Published version available in Journal of Anatomy 2015, 226(3):268-277 .