ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reducing the number of individuals to monitor shoaling fish systems – Application of the Shannon entropy to construct a biological warning system model

Permanent link
https://hdl.handle.net/10037/13168
DOI
https://doi.org/10.3389/fphys.2018.00493
Thumbnail
View/Open
article.pdf (1.903Mb)
(PDF)
Date
2018-05-08
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Eguiraun, Harkaitz; Casquero, Oskar; Sørensen, Asgeir Johan; Martinez, Iciar
Abstract
The present study aims at identifying the lowest number of fish (European seabass) that could be used for monitoring and/or experimental purposes in small-scale fish facilities by quantifying the effect that the number of individuals has on the Shannon entropy (SE) of the trajectory followed by the shoal’s centroid. Two different experiments were performed: (i) one starting with 50 fish and decreasing to 25, 13, and 1 fish, and (ii) a second experiment starting with one fish, adding one new fish per day during 5 days, ending up with five fish in the tank. The fish were recorded for 1h daily, during which time a stochastic event (a hit in the tank) was introduced. The SE values were calculated from the images corresponding to three arbitrary basal (shoaling) periods of 3.5 min prior to the event, and to the 3.5 min period immediately after the event (schooling response). Taking both experiments together, the coefficient of variation (CV) of the SE among measurements was largest for one fish systems (CV 37.12 and 17.94% for the daily average basal and response SE, respectively) and decreased concomitantly with the number of fish (CV 8.6–10% for the basal SE of 2 to 5 fish systems and 5.86, 2.69, and 2.31% for the basal SE of 13, 25, and 50 fish, respectively). The SE of the systems kept a power relationship with the number of fish (basal: R2 = 0.93 and response: R2 = 0.92). Thus, 5–13 individuals should be the lowest number for a compromise between acceptable variability (<10%) in the data and reduction in the number of fish. We believe this to be the first scientific work made to estimate the minimum number of individuals to be used in subsequent experimental (including behavioral) studies using shoaling fish species that reaches a compromise between the reduction in number demanded by animal welfare guidelines and a low variability in the fish system’s response.
Description
Source at https://doi.org/10.3389/fphys.2018.00493.
Publisher
Frontiers Media
Citation
Eguiraun, H., Casquero, O., Sørensen, A.J. & Martinez, I. (2018). Reducing the number of individuals to monitor shoaling fish systems – Application of the Shannon entropy to construct a biological warning system model. Frontiers in Physiology, 9, 1-13. https://doi.org/10.3389/fphys.2018.00493.
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (Norges fiskerihøgskole) [1055]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)