ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Metabarcoding of shrimp stomach content: harnessing a natural sampler for fish biodiversity monitoring

Permanent link
https://hdl.handle.net/10037/14115
DOI
https://doi.org/10.1111/1755-0998.12956
Thumbnail
View/Open
article.pdf (1.335Mb)
Accepted manuscript version (PDF)
Date
2018-10-28
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Siegenthaler, Andjin; Wangensteen Fuentes, Owen Simon; Soto, Ana Z.; Benvenuto, Chiara; Corrigan, Laura; Mariani, Stefano
Abstract
Given their positioning and biological productivity, estuaries have long represented key providers of ecosystem services, and consequently remain under remarkable pressure from numerous forms of anthropogenic impact. The monitoring of fish communities in space and time are one of the most widespread and established approaches to assess the ecological status of estuaries and other coastal habitats, but traditional fish surveys are invasive, costly, labour intensive and highly selective. Recently, the application of metabarcoding techniques, on either sediment or aqueous environmental DNA, has rapidly gained popularity. Here, we evaluate the application of a novel, high through‐put DNA‐based monitoring tool to assess fish diversity, based on the analysis of the gut contents of a generalist predator/scavenger, the European brown shrimp, Crangon crangon. Sediment and shrimp samples were collected from eight European estuaries and DNA metabarcoding (using both 12S and COI markers) was carried out to infer fish assemblage composition. We detected 32 teleost species (16 and 20, for 12S and COI respectively). Twice as many species were recovered using metabarcoding than by traditional net surveys. By comparing and interweaving trophic, environmental DNA and traditional survey‐based techniques, we show that the DNA‐assisted gut content analysis of a ubiquitous, easily accessible, generalist species may serve as a powerful, rapid and cost‐effective tool for large scale, routine estuarine biodiversity monitoring.
Description
This is the peer reviewed version of the following article: Siegenthaler, A., Wangensteen Fuentes, O.S., Soto, A.Z., Benvenuto, C., Corrigan, L, & Mariani, S. (2018). Metabarcoding of shrimp stomach content: harnessing a natural sampler for fish biodiversity monitoring. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.12956, which has been published in final form at https://doi.org/10.1111/1755-0998.12956. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Publisher
Wiley
Citation
Siegenthaler, A., Wangensteen Fuentes, O.S., Soto, A.Z., Benvenuto, C., Corrigan, L, & Mariani, S. (2018). Metabarcoding of shrimp stomach content: harnessing a natural sampler for fish biodiversity monitoring. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.12956
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (Norges fiskerihøgskole) [1053]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)