ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CpGs Induce Differentiation of Atlantic Salmon Mononuclear Phagocytes Into Cells With Dendritic Morphology and a Proinflammatory Transcriptional Profile but an Exhausted Allostimulatory Activity

Permanent link
https://hdl.handle.net/10037/15107
DOI
https://doi.org/10.3389/fimmu.2019.00378
Thumbnail
View/Open
article.pdf (6.138Mb)
Publisher's version (PDF)
Date
2019-03-13
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Iliev, Dimitar Borisov; Lagos, Leidy; Thim, Hanna Leena; Jørgensen, Sven Martin; Krasnov, Aleksei; Jørgensen, Jorunn B
Abstract
Due to their ability to present foreign antigens and prime naïve T cells, macrophages, and dendritic cells (DCs) are referred to as professional antigen-presenting cells (APCs). Although activated macrophages may function as APCs, these cells are particularly effective at directly engaging pathogens through phagocytosis, and production of antimicrobial compounds. On the other hand, DCs possess superb antigen-presenting and costimulatory capacity and they are essential for commencement and regulation of adaptive immune responses. In in vitro models, development of mature mammalian DCs from monocytes requires sequential exposure to growth factors (including GM-CSF and IL-4) and proinflammatory stimuli such as toll-like receptor (TLR) ligands. Currently, except for IL-4/13, neither orthologs nor functional analogs of the growth factors which are essential for the differentiation of mammalian DCs (including GM-CSF and FLT3) have been identified in teleosts and data about differentiation of piscine APCs is scant. In the present study, primary salmon mononuclear phagocytes (MPs) stimulated in vitro for 5–7 days with a B-class CpG oligodeoxynucleotides (ODN 2006PS) underwent morphological differentiation and developed “dendritic” morphology, characterized by long, branching pseudopodia. Transcriptional profiling showed that these cells expressed high levels of proinflammatory mediators characteristic for M1 polarized MPs. However, the cells treated with CpGs for 7 days downregulated their surface MHCII molecules as well as their capacity to endocytose ovalbumin and exhibited attenuated allostimulatory activity. This concurred with transcriptional downregulation of costimulatory CD80/86 and upregulation of inhibitory CD274 (B7-H1) genes. Despite their exhausted allostimulatory activity, these cells were still responsive to re-stimulation with gardiquimod (a TLR7/8 ligand) and further upregulated a wide array of immune genes including proinflammatory mediators such as intereukin-1 beta and tumor necrosis factor. Overall, the presented data highlight the disparate effects TLR ligands may have on the proinflammatory status of APCs, on one side, and their antigen-presenting/costimulatory functions, on the other. These findings also indicate that despite the poor phylogenetic conservation of the growth factors involved in the differentiation of DCs, some of the processes that orchestrate the development and the differentiation of professional APCs are conserved between teleosts in mammals.
Description
The following article, Iliev, D.B., Lagos, L., Thim, H.L., Jørgensen, S.M., Krasnov, A. & Jørgensen, J.B. (2019). CpGs Induce Differentiation of Atlantic Salmon Mononuclear Phagocytes Into Cells With Dendritic Morphology and a Proinflammatory Transcriptional Profile but an Exhausted Allostimulatory Activity. Frontiers in Immunology, can be accessed at https://doi.org/10.3389/fimmu.2019.00378.
Publisher
Frontiers Media
Citation
Iliev, D.B., Lagos, L., Thim, H.L., Jørgensen, S.M., Krasnov, A. & Jørgensen, J.B. (2019). CpGs Induce Differentiation of Atlantic Salmon Mononuclear Phagocytes Into Cells With Dendritic Morphology and a Proinflammatory Transcriptional Profile but an Exhausted Allostimulatory Activity. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2019.00378
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (Norges fiskerihøgskole) [1054]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)