ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Norges fiskerihøgskole
  • Artikler, rapporter og annet (Norges fiskerihøgskole)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Methanol-based acetoin production by genetically engineered Bacillus methanolicus

Permanent link
https://hdl.handle.net/10037/17214
DOI
https://doi.org/10.1039/c9gc03950c
Thumbnail
View/Open
article.pdf (1.758Mb)
Accepted manuscript version (PDF)
Date
2019-12-10
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Drejer, Eivind Bøe; Chan, Dennis; Haupka, Carsten; Wendisch, Volker F.; Brautaset, Trygve; Irla, Marta Katarzyna
Abstract
Methanol is an attractive alternative non-food feedstock for industrial fermentations that can be used instead of sugar-based raw materials. Here, the thermophilic and methylotrophic bacterium Bacillus methanolicus MGA3 was metabolically engineered to produce the platform chemical (R)-acetoin from methanol at 50 °C. Three different heterologous alsSD/budAB operons, each encoding acetolactate synthase and acetolactate decarboxylase, were functionally expressed under control of an inducible promoter in B. methanolicus MGA3, resulting in up to 0.26 ± 0.04 g L−1 of (R)-acetoin titer in shake flask cultivations. To further improve acetoin production, a total of six different genes or operons were expressed in the acetoin producing strains to increase supply of the acetoin precursor pyruvate. In particular, expression of a gene coding for malic enzyme from Geobacillus stearothermophilus in combination with the isocitrate lyase gene from B. methanolicus MGA3 increased acetoin titers 1.6-fold up to 0.42 ± 0.01 g L−1 which corresponds to 0.07 g g−1 methanol. This resulted in an MGA3 strain overproducing 4 recombinant enzymes in total from two different plasmids with two distinct antibiotics resistance markers, demonstrating the increased complexity of metabolic engineering allowed by newly developed genetic tools for this organism. To our knowledge, this is the first demonstration of microbial production of acetoin from methanol.
Publisher
Royal Society of Chemistry
Citation
Drejer EB, Chan D, Haupka, Wendisch VF, Brautaset T, Irla MK. Methanol-based acetoin production by genetically engineered Bacillus methanolicus. Green Chemistry. 2019
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (Norges fiskerihøgskole) [1053]
© The Royal Society of Chemistry 2020

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)