ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for medisinsk biologi
  • Artikler, rapporter og annet (medisinsk biologi)
  • View Item
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for medisinsk biologi
  • Artikler, rapporter og annet (medisinsk biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Role of Horizontal Gene Transfer in the Development of Multidrug Resistance in Haemophilus influenzae

Permanent link
https://hdl.handle.net/10037/18499
DOI
https://doi.org/10.1128/mSphere.00969-19
Thumbnail
View/Open
article.pdf (2.253Mb)
Published version (PDF)
Date
2020-01-29
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Hegstad, Kristin; Mylvaganam, Haima; Janice, Jessin; Josefsen, Ellen H.; Sivertsen, Audun; Skaare, Dagfinn
Abstract
Haemophilus influenzae colonizes the respiratory tract in humans and causes both invasive and noninvasive infections. Resistance to extended-spectrum cephalosporins in H. influenzae is rare in Europe. In this study, we defined acquired resistance gene loci and ftsI mutations in multidrug-resistant (MDR) and/or PBP3-mediated beta-lactam-resistant (rPBP3) H. influenzae strains, intending to understand the mode of spread of antibiotic resistance determinants in this species. Horizontal transfer of mobile genetic elements and transformation with resistance-conferring ftsI alleles were contributory. We found one small plasmid and three novel integrative conjugative elements (ICEs) which carry different combinations of resistance genes. Demonstration of transfer and/or ICE circular forms showed that the ICEs are functional. Two extensively MDR genetically unrelated H. influenzae strains (F and G) from the same geographical region shared an identical novel MDR ICE (Tn6686) harboring blaTEM-1, catA2-like, and tet(B). The first Nordic case of MDR H. influenzae septicemia, strain 0, originating from the same geographical area as these strains, had a similar resistance pattern but contained another ICE [Tn6687 with blaTEM-1, catP and tet(B)] with an overall structure quite similar to that of Tn6686. Comparison of the complete ftsI genes among rPBP3 strains revealed that the entire gene or certain regions of it are identical in genetically unrelated strains, indicating horizontal gene transfer. Our findings illustrate that H. influenzae is capable of acquiring resistance against a wide range of commonly used antibiotics through horizontal gene transfer, in terms of conjugative transfer of ICEs and transformation of chromosomal genes.
Publisher
American Society for Microbiology
Citation
Hegstad K, Mylvaganam H, Janice JJ, Josefsen EH, Sivertsen A, Skaare D. Role of Horizontal Gene Transfer in the Development of Multidrug Resistance in Haemophilus influenzae. mSphere. 2020;5(1)
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (medisinsk biologi) [1103]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)