ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for farmasi
  • Artikler, rapporter og annet (farmasi)
  • View Item
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for farmasi
  • Artikler, rapporter og annet (farmasi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of a novel beta-glucan supplemented hydrogel spray formulation and wound healing efficacy in a db/db diabetic mouse model

Permanent link
https://hdl.handle.net/10037/23097
DOI
https://doi.org/10.1016/j.ejpb.2021.10.013
Thumbnail
View/Open
article.pdf (7.180Mb)
Published version (PDF)
Date
2021-10-30
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Grip, Jostein; Steene, Erik; Engstad, Rolf Einar; Hart, Jeff; Bell, Andrea; Skjærveland, Ingrid; Basnet, Purusotam; Skalko-Basnet, Natasa; Holsæter, Ann Mari
Abstract
To relieve the severe economic and social burdens and patient suffering caused by the increasing incidence of chronic wounds, more effective treatments are urgently needed. In this study, we focused on developing a novel sprayable wound dressing with the active ingredient β-1,3/1,6-glucan (βG). Since βG is already available as the active ingredient in a commercial wound healing product provided as a hydrogel in a tube (βG-Gel), the sprayable format should bring clinical benefit by being easily sprayed onto wounds; whilst retaining βG-Gel’s physical stability, biological safety and wound healing efficacy. Potentially sprayable βG hydrogels were therefore formulated, based on an experimental design setup. One spray formulation, named βG-Spray, was selected for further investigation, as it showed favorable rheological and spraying properties. The βG-Spray was furthermore found to be stable at room temperature for more than a year, retaining its rheological properties and sprayability. The cytotoxicity of βG-Spray in keratinocytes in vitro, was shown to be promising even at the highest tested concentration of 100 μg/ml. The βG-Spray also displayed favorable fluid affinity characteristics, with a capacity to both donate and absorb close to 10% fluid relative to its own weight. Finally, the βG-Spray was proven comparably effective to the commercial product, βG-Gel, and superior to both the water and the carrier controls (NoβG-Spray), in terms of its ability to promote wound healing in healing-impaired animals. Contraction was found to be the main wound closure mechanism responsible for the improvement seen in the βG-treatment groups (βG-Spray and βG-Gel). In conclusion, the novel sprayable βG formulation, confirmed its potential to expand the clinical use of βG as wound dressing.
Publisher
Elsevier
Citation
Grip J, Steene E, Engstad RE, Hart, Bell A, Skjærveland I, Basnet P, Skalko-Basnet N, Holsæter A M. Development of a novel beta-glucan supplemented hydrogel spray formulation and wound healing efficacy in a db/db diabetic mouse model. European journal of pharmaceutics and biopharmaceutics. 2021;169:280-291
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (farmasi) [394]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)