ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for humaniora, samfunnsvitenskap og lærerutdanning
  • Institutt for arkeologi, historie, religionsvitenskap og teologi
  • Artikler, rapporter og annet (arkeologi, historie, religionsvitenskap og teologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for humaniora, samfunnsvitenskap og lærerutdanning
  • Institutt for arkeologi, historie, religionsvitenskap og teologi
  • Artikler, rapporter og annet (arkeologi, historie, religionsvitenskap og teologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lessons Learned Developing and Using a Machine Learning Model to Automatically Transcribe 2.3 Million Handwritten Occupation Codes

Permanent lenke
https://hdl.handle.net/10037/24000
DOI
https://doi.org/10.51964/hlcs11331
Thumbnail
Åpne
article.pdf (1.723Mb)
Publisert versjon (PDF)
Dato
2022-01-06
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Pedersen, Bjørn-Richard; Holsbø, Einar; Andersen, Trygve; Shvetsov, Nikita; Ravn, Johan; Sommerseth, Hilde Leikny; Bongo, Lars Ailo
Sammendrag
Machine learning approaches achieve high accuracy for text recognition and are therefore increasingly used for the transcription of handwritten historical sources. However, using machine learning in production requires a streamlined end-to-end pipeline that scales to the dataset size and a model that achieves high accuracy with few manual transcriptions. The correctness of the model results must also be verified. This paper describes our lessons learned developing, tuning and using the Occode end-to-end machine learning pipeline for transcribing 2.3 million handwritten occupation codes from the Norwegian 1950 population census. We achieve an accuracy of 97% for the automatically transcribed codes, and we send 3% of the codes for manual verification . We verify that the occupation code distribution found in our results matches the distribution found in our training data, which should be representative for the census as a whole. We believe our approach and lessons learned may be useful for other transcription projects that plan to use machine learning in production.
Sitering
Pedersen B, Holsbø EJ, Andersen T, Shvetsov N, Ravn J, Sommerseth HL, Bongo LA. Lessons Learned Developing and Using a Machine Learning Model to Automatically Transcribe 2.3 Million Handwritten Occupation Codes. Historical Life Course Studies. 2022;11:1-17
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (arkeologi, historie, religionsvitenskap og teologi) [301]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring