ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards robust partially supervised multi-structure medical image segmentation on small-scale data

Permanent lenke
https://hdl.handle.net/10037/26655
DOI
https://doi.org/10.1016/j.asoc.2021.108074
Thumbnail
Åpne
article.pdf (1.702Mb)
Publisert versjon (PDF)
Dato
2021-11-20
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Dong, Nanqing; Kampffmeyer, Michael; Liang, Xiaodan; Xu, Min; Voiculescu, Irina; Xing, Eric
Sammendrag
The data-driven nature of deep learning (DL) models for semantic segmentation requires a large number of pixel-level annotations. However, large-scale and fully labeled medical datasets are often unavailable for practical tasks. Recently, partially supervised methods have been proposed to utilize images with incomplete labels in the medical domain. To bridge the methodological gaps in partially supervised learning (PSL) under data scarcity, we propose Vicinal Labels Under Uncertainty (VLUU), a simple yet efficient framework utilizing the human structure similarity for partially supervised medical image segmentation. Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels. We systematically evaluate VLUU under the challenges of small-scale data, dataset shift, and class imbalance on two commonly used segmentation datasets for the tasks of chest organ segmentation and optic disc-and-cup segmentation. The experimental results show that VLUU can consistently outperform previous partially supervised models in these settings. Our research suggests a new research direction in label-efficient deep learning with partial supervision.
Forlag
Elsevier
Sitering
Dong, Kampffmeyer, Liang, Xu, Voiculescu, Xing. Towards robust partially supervised multi-structure medical image segmentation on small-scale data. Applied Soft Computing. 2022;114
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1062]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring