Vis enkel innførsel

dc.contributor.authorAlonso, Sergio Arredondo
dc.contributor.authorGladstone, Rebecca Ashley
dc.contributor.authorPöntinen, Anna Kaarina
dc.contributor.authorGama, João Alves
dc.contributor.authorSchürch, Anita C.
dc.contributor.authorLanza, Val F.
dc.contributor.authorJohnsen, Pål Jarle
dc.contributor.authorSamuelsen, Ørjan
dc.contributor.authorTonkin-Hill, Gerry
dc.contributor.authorCorander, Jukka
dc.date.accessioned2023-12-13T10:54:01Z
dc.date.available2023-12-13T10:54:01Z
dc.date.issued2023-07-10
dc.description.abstractExtrachromosomal elements of bacterial cells such as plasmids are notorious for their importance in evolution and adaptation to changing ecology. However, high-resolution population-wide analysis of plasmids has only become accessible recently with the advent of scalable long-read sequencing technology. Current typing methods for the classification of plasmids remain limited in their scope which motivated us to develop a computationally efficient approach to simultaneously recognize novel types and classify plasmids into previously identified groups. Here, we introduce mge-cluster that can easily handle thousands of input sequences which are compressed using a unitig representation in a de Bruijn graph. Our approach offers a faster runtime than existing algorithms, with moderate memory usage, and enables an intuitive visualization, classification and clustering scheme that users can explore interactively within a single framework. Mge-cluster platform for plasmid analysis can be easily distributed and replicated, enabling a consistent labelling of plasmids across past, present, and future sequence collections. We underscore the advantages of our approach by analysing a population-wide plasmid data set obtained from the opportunistic pathogen Escherichia coli, studying the prevalence of the colistin resistance gene mcr-1.1 within the plasmid population, and describing an instance of resistance plasmid transmission within a hospital environment.en_US
dc.identifier.citationAlonso, Gladstone, Pöntinen, Gama, Schürch, Lanza, Johnsen, Samuelsen, Tonkin-Hill, Corander. Mge-cluster: a reference-free approach for typing bacterial plasmids. NAR Genomics and Bioinformatics. 2023;5(3)en_US
dc.identifier.cristinIDFRIDAID 2180301
dc.identifier.doi10.1093/nargab/lqad066
dc.identifier.issn2631-9268
dc.identifier.urihttps://hdl.handle.net/10037/32054
dc.language.isoengen_US
dc.publisherOxford University Pressen_US
dc.relation.journalNAR Genomics and Bioinformatics
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/?/?/?/?/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleMge-cluster: a reference-free approach for typing bacterial plasmidsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)