Using ancient sedimentary DNA to forecast ecosystem trajectories under climate change
Permanent lenke
https://hdl.handle.net/10037/34469Dato
2024-05-27Type
Journal articleTidsskriftartikkel
Peer reviewed
Forfatter
Alsos, Inger Greve; Boussange, Victor; Rijal, Dilli Prasad; Beaulieu, Marieke-Lise; Brown, Antony Gavin; Herzschuh, Ulrike; Svenning, Jens-Christian; Pellissier, LoïcSammendrag
Ecosystem response to climate change is complex. In order to forecast ecosystem dynamics, we need high-quality data on changes in past species abundance that can inform process-based models. Sedimentary ancient DNA (sedaDNA) has revolutionised our ability to document past ecosystems' dynamics. It provides time series of increased taxonomic resolution compared to microfossils (pollen, spores), and can often give species-level information, especially for past vascular plant and mammal abundances. Time series are much richer in information than contemporary spatial distribution information, which have been traditionally used to train models for predicting biodiversity and ecosystem responses to climate change. Here, we outline the potential contribution of sedaDNA to forecast ecosystem changes. We showcase how species-level time series may allow quantification of the effect of biotic interactions in ecosystem dynamics, and be used to estimate dispersal rates when a dense network of sites is available. By combining palaeo-time series, process-based models, and inverse modelling, we can recover the biotic and abiotic processes underlying ecosystem dynamics, which are traditionally very challenging to characterise. Dynamic models informed by sedaDNA can further be used to extrapolate beyond current dynamics and provide robust forecasts of ecosystem responses to future climate change.
This article is part of the theme issue ‘Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere’.
Forlag
The Royal SocietySitering
Alsos, Boussange, Rijal, Beaulieu, Brown, Herzschuh, Svenning, Pellissier. Using ancient sedimentary DNA to forecast ecosystem trajectories under climate change. Philosophical Transactions of the Royal Society of London. Biological Sciences. 2024;379(1902)Metadata
Vis full innførselSamlinger
Copyright 2024 The Author(s)