Vis enkel innførsel

dc.contributor.authorDutta, Surjendu Bikash
dc.contributor.authorSchürstedt-Seher, Jasmin Celine
dc.contributor.authorEngdahl, Anders Kokkvoll
dc.contributor.authorHübner, Wolfgang
dc.contributor.authorBelle, Stefan
dc.contributor.authorSzafranska, Karolina Joanna
dc.contributor.authorMcCourt, Peter Anthony
dc.contributor.authorHellmann, Ralf
dc.contributor.authorSchüttpelz, Mark
dc.contributor.authorHuser, Thomas
dc.date.accessioned2025-01-23T10:37:27Z
dc.date.available2025-01-23T10:37:27Z
dc.date.issued2024-12-25
dc.description.abstractSuper-resolution optical microscopy (SRM) permits the visualization of subcellular structures of biological samples beyond the diffraction limit of light. To evaluate and utilize the specific strengths of each SRM technique a combined approach in the form of correlative super-resolution imaging is essential. Here, the correlative SRM imaging of the ultrastructure of rat liver sinusoidal endothelial cells (LSECs) across a large field of view (FOV) with 3D structured illumination microscopy (3D-SIM) and single-molecule localization microscopy (SMLM), facilitated by a transparent polymer photonic waveguide chip, is presented. This waveguide is not only used for chip-based total internal reflection fluorescence (TIRF) excitation across a large FOV, but also enables the excitation and collection of single-molecule fluorescence via the inverted microscope configuration. Furthermore, the structural design of the waveguides allows to identify and correlate sample positions across multiple microscopes. This correlative SIM and multi-modality SMLM imaging provides a high throughput (FOV of ≈180 μm × 120 μm) method to analyze the structural morphology of LSECs with high spatial resolution (≈50 nm). Furthermore, waveguide chip-based TIRF excitation also yields a significant reduction of background signals.en_US
dc.identifier.citationDutta, Schürstedt-Seher, Engdahl, Hübner, Belle, Szafranska, McCourt, Hellmann, Schüttpelz, Huser. Correlative Super-Resolution Imaging of Cellular Nanopores Facilitated by Transparent Polymer Waveguide Chips. Advanced Optical Materials. 2024en_US
dc.identifier.cristinIDFRIDAID 2342834
dc.identifier.doi10.1002/adom.202402783
dc.identifier.issn2195-1071
dc.identifier.urihttps://hdl.handle.net/10037/36322
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.journalAdvanced Optical Materials
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101046928/EU/ Long-term Microphysiological Sample Imaging for Evaluation of Polypharmacy in Liver/DeLIVERYen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)en_US
dc.titleCorrelative Super-Resolution Imaging of Cellular Nanopores Facilitated by Transparent Polymer Waveguide Chipsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)