Vis enkel innførsel

dc.contributor.authorBoardman, Neoma Tove
dc.contributor.authorAronsen, J. M.
dc.contributor.authorLouch, William Edward
dc.contributor.authorSjaastad, Ivar
dc.contributor.authorWilloch, Frode
dc.contributor.authorChristensen, Geir Arve
dc.contributor.authorSejersted, Ole M
dc.contributor.authorAasum, Ellen
dc.date.accessioned2016-02-19T10:14:49Z
dc.date.available2016-02-19T10:14:49Z
dc.date.issued2014-01-31
dc.description.abstractSarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2 transports Ca2+ from the cytosol into the sarcoplasmic reticulum of cardiomyocytes and is essential for maintaining myocardial Ca2+ handling and thus the mechanical function of the heart. SERCA2 is a major ATP consumer in excitation-contraction coupling but is regarded to contribute to energetically efficient Ca2+ handling in the cardiomyocyte. Previous studies using cardiomyocyte-specific SERCA2 knockout (KO) mice have demonstrated that decreased SERCA2 activity reduces the Ca2+ transient amplitude and induces compensatory Ca2+ transport mechanisms that may lead to more inefficient Ca2+ transport. In this study, we examined the relationship between left ventricular (LV) function and myocardial O2 consumption (MV̇O2) in ex vivo hearts from SERCA2 KO mice to directly measure how SERCA2 elimination influences mechanical and energetic features of the heart. Ex vivo hearts from SERCA2 KO hearts developed mechanical dysfunction at 4 wk and demonstrated virtually no working capacity at 7 wk. In accordance with the reported reduction in Ca2+ transient amplitude in cardiomyocytes from SERCA2 KO mice, work-independent MV̇O2 was decreased due to a reduced energy cost of excitation-contraction coupling. As these hearts also showed a marked impairment in the efficiency of chemomechanical energy transduction (contractile efficiency, i.e, work-dependent MV̇O2), hearts from SERCA2 KO mice were found to be mechanically inefficient. This ex vivo evaluation of mechanical and energetic function in hearts from SERCA2 KO mice brings together findings from previous experimental and mathematical modeling-based studies and demonstrates that reduced SERCA2 activity not only leads to mechanical dysfunction but also to energetic dysfunction.en_US
dc.identifier.citationAmerican Journal of Physiology - Heart and Circulatory Physiology, Vol. 306 no. 7 (2014), H1018-H1024en_US
dc.identifier.cristinIDFRIDAID 1236589
dc.identifier.doi10.1152/ajpheart.00741.2013
dc.identifier.issn0363-6135
dc.identifier.urihttps://hdl.handle.net/10037/8518
dc.identifier.urnURN:NBN:no-uit_munin_8081
dc.language.isoengen_US
dc.publisherAmerican Physiological Societyen_US
dc.rights.accessRightsopenAccess
dc.subjectcontractile efficiencyen_US
dc.subjectmechanical efficiencyen_US
dc.subjectmechanoenergeticsen_US
dc.subjectmyocardial oxygen consumptionen_US
dc.subjectpressure-volume areaen_US
dc.subjectVDP::Medical disciplines: 700::Clinical medical disciplines: 750::Cardiology: 771en_US
dc.subjectVDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Kardiologi: 771en_US
dc.titleImpaired left ventricular mechanical and energetic function in mice after cardiomyocyte-specific excision of Serca2en_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel